《基础数学专业研究生培养方案.doc》由会员分享,可在线阅读,更多相关《基础数学专业研究生培养方案.doc(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学(0701)直博生培养方案一、培养目标本学科培养德、智、体全面发展,在基础数学、计算数学、概率论及数理统计、应用数学、运筹学及控制论等领域具有坚实的专业理论基础、独立从事科学研究能力或较强实际工作能力的高层次一流数学人才。学位获得者有能力承担高等院校、科研机构的教学、科研工作,或企事业单位的研发和管理工作。 二、研究方向1、基础数学 (1)代数(2)图论(3)拓扑学 (4)常微分方程(5)偏微分方程(6)泛函分析 (7)调和分析及逼近论(8)复分析(9)数理逻辑及数学基础(10)数论(11)微分几何学2、计算数学 (1)线性及非线性规划(2)应用数值代数及并行计算(3)偏微分方程数值解法
2、(4)应用软件(5)管理和决策的数值方法3、概率论及数理统计 (1)估计及检验的方法及理论及随机规划(2)时间序列分析(3)排队论 4、应用数学 (1)反应及扩散系统的理论及数值方法(2)动力系统:微分动力系统、哈密顿动力系统(3)常微分方程 (4)偏微分方程(5)流体力学中的数学理论5、运筹学及控制论 (1)大系统优化问题的理论、方法和应用(2)人工神经网络在优化问题中的应用(3)多目标决策 (4)模糊数学方法在决策分析中的应用(5)智能算法(6)最优化控制问题的数值方法三、招生对象 应届本科毕业生、已获得推荐免试保研资格,并经复试合格者。四、学习年限基本学制:五年五、课程设置1、除博士生政
3、治课程、英语课程外,直博生需修满28学分硕士阶段课程。2、公共基础课,包括:中国特色社会主义理论及实践研究(2学分,必修);自然辩证法概论、马克思主义及社会科学方法论、马克思主义原著选读(以上三门任选一门,1学分);中国马克思主义及当代、博士英语。3、B类课程即公共学位课程8学分,包括:现代分析、基础代数。4、C类课程即专业学位课程9-12学分;其中,基础数学、应用数学专业要在以下课程中选三门:代数拓扑、微分拓扑、流形及几何、偏微分方程、同调代数、紧黎曼曲面、动力系统、代数几何、代数数论、交换代数、数学的思想方法;计算数学、运筹及控制、概率论及数理统计专业要在以下课程中任选三门:概率论、多元迭
4、代分析、数值代数、随机过程、偏微分方程、偏微分方程数值方法、数理统计基础、数学的思想方法。5、D类课程即选修课程4-7学分,其中跨二级学科选修课程至少一门。6、直博生在博士资格考核前必须修数学的思想方法,成绩必须在良好以上。课程类型课程名称编号授课教师或团队学分课程类别课程简介(300字左右)B现代分析0701B01钟承奎4转型期课程本课程是硕士研究生分析学的基础课程,内容主要包括抽象测度及抽象积分,局部紧拓扑空间上的Borel测度及Riesz表示定理,Lp空间,复测度及Riesz表示定理,对称重排,Hardy-Littlewood-Sobolev 不等式,Fourier变换,以及 Sobol
5、ev 空间等。通过该课程的学习,使学生对现代分析的思想和方法有了基本的了解及掌握,为进一步学习泛函分析,偏微分方程以及调和分析奠定了基础,对其他方向的研究生,如计算数学,应用数学方向上的研究生也会有很大的帮助。基础代数0701B02黄兆泳4转型期课程本课程是大学本科阶段抽象代数的延伸,目的是为了使学生了解和掌握范畴理论的一些基本概念和方法以及一些重要模类的基本性质。范畴理论是代数学中的一个重要分支,其中的许多概念和方法有助于我们对数学整体的理解。对范畴理论的研究,导致了大量新观点和新问题的提出,它们不仅在范畴理论本身是重要的,同时还在不同的具体范畴中提出了新的研究课题。这一点对于模范畴更为典型
6、,而后者又反过来促进了范畴理论的发展。本课程主要介绍一些重要模类,如:Artin模,Noether模,投射模,内射模和平坦模等的定义和基本性质,介绍正向极限及反向极限的定义和性质;讲述一般范畴和函子以及加法范畴及Abel范畴这两个重要且基本的范畴的概念和基本性质。C流形及几何070101C03梅加强4转型期课程本课程的目的是介绍微分流形和现代几何学的基础概念,为从事现代数学和现代理论物理学研究者提供现代几何的入门知识和方法。先修课程为点集拓扑、泛函分析等。本课主要介绍微分流形上的微积分以及流形的几何性质和拓扑性质,主要内容包括:微分流形的定义,子流形,单位分解,切空间和切向量场,Frobeni
7、us可积性定理及其应用,向量丛和张量丛,微分形式,带有边界的流形,Stokes积分公式,黎曼几何的基本概念,活动标架法,Lie 群和齐性空间基础,主丛及其联络,De Rham 上同调,Gauss-Bonnet-Chern 公式,Chern-Weil 理论。通过本课程学习,使学生初步掌握微分流形的基本概念和现代几何学研究的基本技巧,从几何、拓扑和整体分析这三个方面了解现代几何研究的基本手法,为深入学习黎曼几何或几何分析等打下扎实基础。代数拓扑070101C01于立4专业核心课程代数拓扑是一门利用代数的工具来研究空间的拓扑性质(即在连续变形下的保持不变的性质)的学科。本课程的目的是通过介绍代数拓扑
8、学的基本理论和典型例子,让学生初步掌握这门学科的基本思想和方法,并提高学生的空间想象能力和数形结合的能力。另外,这门课能让学生从一些新的角度重新审视以往学过的一些数学知识,有助于提高学生的数学成熟性。具体来说,这门课的理论内容主要分为三个部分:基本群、复叠空间和同调论。利用这些理论我们将给出一些著名的拓扑学定理的证明,如Brouwer不动点定理、Ulam-Borsuk定理、毛球定理等。微分拓扑070101C02于立、谭亮4专业核心课程本课程的目的是通过对微分流形上一些典型的几何对象和拓扑学对象的介绍, 让学生初步掌握用分析学的方法解决流形上的拓扑学的问题。在理论介绍的同时培养学生独立思考和发现
9、问题的能力。这门课将为学生以后学习微分几何等其它学科打下基础。本课程要求学生已经具备微积分和点集拓扑的基本知识。同调代数070101C04丁南庆4专业核心课程本课程主要介绍同调代数中的基础知识和基本概念,讲授内容包括:范畴及函子,自然变换,范畴的等价,同态函子及张量积函子,模的直积及直和,正向极限及反向极限,推出及拉回,投射模,内射模,平坦模,诺特环,半单环,von Neumann 正则环,同调函子,导出函子,同态函子的导出函子Ext, 张量积函子的导出函子Tor, 模的投射、内射及平坦维数,环的左(右)整体维数及弱整体维数。最后,简单介绍相对同调代数中的一些基本概念和主要结果。紧黎曼曲面07
10、0101C05梅加强3专业核心课程本课程的目的是介绍黎曼曲面上的几何、拓扑和分析基础,为复流形、复几何及代数几何的学习提供基础和预备知识。通过本课程的学习可使学生掌握复分析、复几何和拓扑学的基本手法,感受现代数学之美。本课程主要内容包括:黎曼曲面的定义,调和函数和梯度估计,Harnack 原理,Riemann 映照定理,Perron 方法,单值化定理,因子和线丛,Hodge 定理,Riemann-Roch定理及其应用,Abel-Jacobi定理,层和层的上同调,线丛的Hermite几何,上同调的对偶定理和消没定理,线丛的Chern 类。通过本课程学习,使学生初步掌握黎曼曲面的基本概念和一维复流
11、形上的几何分析基本技巧,了解几何概念,分析和拓扑方法的综合运用,为今后的深入学习复微分几何或复代数几何打下扎实基础。代数几何070101C07郭学军、纪庆忠4专业核心课程本课程主要讲授代数几何的基本理论和基本方法,包括两部分内容:第一部分是概型的基本概念和性质;第二部分是概型的上同调。该课程旨在培养学生抽象思维和逻辑推理能力以及初步的科研能力,通过本课程的学习,要求学生掌握概型的一般性质,基变换、正规概型、约化概型、分离射,本证设,模层,除子,射映态射,平谈太射和光滑太射,凝聚层;层的上同调,仿射和投射概型的上同调, Cech 上同调,Serre对偶定理,Kahler微分、曲线的除子理论。多元
12、迭代分析070102C02黄震宇4专业核心课程多元迭代分析是研究生数学系计算数学和优化运筹专业的一门专业基础课。这门课程对于学生加深理论基础的学习,增强基本技能的训练,提高数学修养和业务素质,有着重要作用。本课程以多元微积分为基础,主要内容为多元迭代分析的理论和应用。本课程的教学目的是:一、使学生对迭代思想及方法有较深刻的认识,学习科学的思想方法,以利于计算数学理论和算法的培养及形成。 二、使学生掌握多元迭代分析的基本知识、基本理论及基本技能,提高抽象思维、逻辑推理及算法构造的能力。三、使学生对计算数学中相关内容有较深刻的理性认识,能深入浅出地处理好这些内容的内在联系。本课程要求学生已修过大学
13、本科学习中的计算方法,高等代数和数值分析等课程。数值代数070102C03王征宇4专业核心课程数值线性代数(简称数值代数)是研究线性代数问题的数值算法的一门学科。这里的线性代数问题包含,例如,线性方程组的求解,矩阵特征问题等等。我们知道,求解一个数学问题的实际途径是计算它的数值解,对问题离散化(有限化)、线性化就会产生线性代数问题。求解线性代数问题,实际的方法就是对其研发运行于数字计算机上的算法,这正是数值代数的研究内容。数值代数是工程计算的非常重要的基础组成部分,需要我们深入学习掌握。数值代数课程从数值的角度分析线性代数问题、介绍数值算法、阐明算法思想、分析算法性状及实施细节。偏微分方程数值
14、方法070102C04武海军4专业核心课程本课程以椭圆方程为例,介绍偏微分方程的多种数值离散方法及其基本理论及程序实现。内容包括:椭圆型方程的有限差分法;有限元方法及其收敛性理论;有限元多重网格法;内罚(连续和间断)有限元方法;界面问题的非匹配界面罚有限元方法。概率论070103C01王立洪、宋玉林4专业核心课程概率论是研究随机现象的一门数学分支。高等概率论是现代概率论的数学基础,其主要目的是使用公理化手段把概率论纳入严格的数学体系。及本科阶段学习的直观性强的概率论相比,高等概率论具有内容抽象、应用广泛、推理严谨、结论明确等特征。本课程主要包含三部分内容:(1)测度论-介绍一般可测空间中的测度
15、及积分;(2)现代概率论基础-介绍独立性、条件期望、正则条件概率及鞅等基本概念及性质;(3)极限理论介绍测度的各种收敛性、大数定律及中心极限定理。通过本课程的学习,一方面学会利用测度论的观点和方法分析概率论中的一些重要问题;另一方面掌握条件期望、鞅、独立增量过程等基本概念和重要结果,为概率论理论的后续学习打下基础。随机过程070103C02戴万阳4专业核心课程本课程的教学目的是使学生掌握随机过程的基本理论及方法,希望学生在修本课程之前能掌握一定概率论及测度论的基本知识。本课程主要介绍随机过程的基本理论及方法,包括一般随机过程的定义, 存在定理,流域及停时,鞅过程的定义、性质、分解及极限定理等,
16、离散及连续时间马氏过程、强马氏性等,布朗运动的定义、性质及存在定理,扩散过程的基本概念,泛函大数定律及泛函中心极限定理。数理统计基础070103C03王立洪4专业核心课程本课程是统计学专业高年级本科及硕士生的选修课程。本课程的目的是通过学习统计学的基本理论基础,使学生掌握统计学专业所必需的基础理论、基本统计思想和统计方法,为统计理论研究和统计方法的创新打下坚实的基础,培养学生进行科学研究的能力。本课程主要讲授参数和非参数估计理论、假设检验基本理论,Bayes统计推断和前沿热点统计理论及方法等。先修课程为概率论和应用数理统计。偏微分方程070104C03杨孝平、陈学长等4专业核心课程本课程目的是
17、让学生掌握线性偏微分方程理论的基本知识和基本方法,特别是及可压缩流体动力学,变分法和弹性学,热力学等基本物理现象的本质联系。使对数学分析,矩阵理论,常微分方程,复变函数,实变函数,泛函分析等学科有着更为深刻的理解和掌握,并在学习知识的同时,发现数学及物理学,力学等应用学科的紧密联系。本课程要求学生已修过常微分方程,复变函数等课程。动力系统070104C04程崇庆、尤建功等4专业核心课程动力系统是研究时空演化的一个数学分支。本课程将首先回顾大学课程里已学过的各种空间和映射,包括:拓扑空间,微分流形,测度空间, 微分同胚, 保测变换; 并简介Lie群和Lie代数;然后介绍动力系统的基本概念和研究目
18、标以及重要的Poincare回归定理,Birkhoff遍历定理,Liapunov指数,双曲理论等内容。本课程将强调概念和结论的直观性解释和典型例子,并强调学生的适当参及。本课程还将穿插介绍一些目前活跃的课题和没解决的问题,培养学生发现问题的能力,同时使得学生对已学过的数学知识之间的有机联系有更深刻的理解。数学的思想方法0701C01梅加强等2方法实践类课程本课程属于科学方法类课程,目的是展现数学研究的思想方法,激发学生的数学兴趣。该课将以问题为导向,12周内介绍6到9个数学问题,每个问题占用3到6个学时。我们将介绍各个问题的由来,研究动机,历史状况,是怎样解决的,等等。在此过程中让学生体会数学
19、研究的思想和方法。本课主要面向数学系高年级本科生和硕士研究生,以及对数学感兴趣的其他学生。要求学生具有微积分和线性代数等大学数学的基础知识。D代数学II0701D01黄兆泳3专业核心课程范畴理论是代数学中的一个重要分支,其中的许多概念和方法有助于我们对数学整体的理解。对范畴理论的研究,导致了大量新观点和新问题的提出,它们不仅在范畴理论本身是重要的,同时还在不同的具体范畴中提出了新的研究课题。这一点对于模范畴更为典型,而后者又反过来促进了范畴理论的发展。本课程是本科专业课代数学的延伸,目的是为了使学生了解和掌握代数表示论的一些基本概念和方法以及有限维代数的表示箭图的意义和画法。要求学生有近世代数
20、和代数学的知识基础。交换代数0701D02郭学军4专业核心课程本课程的目的是让学生了解环模等现代数学的基本概念,在学习交换代数经典的诺特环和戴德金整环理论的同时,掌握模论和局部化的方法。同时本课程也要求学生掌握范畴和函子,主要是Hom函子,张量积函子和局部化函子。为学生学习表示论, 同调代数,代数几何等后续课程打下基础。基础数论0701D03孙智伟3专业核心课程数论是历史悠久又充满活力的重要数学分支。本课程目的在于让学生学习了解数论的基础知识及其应用, 为进一步学习相关课程(如代数数论、代数几何)或开发数论在组合及密码中应用打好扎实的基础。 要求学生熟练掌握初等数论(包括素数及唯一分解、同余式
21、理论、数论函数及Mobius反演、有限域及原根等)的基本理论及方法, 并了解解析数论及代数数论的初步知识(包括算术函数的均值估计、代数整数及代数数域等),以及数论在密码中的应用(如RSA密码公钥体制)。代数数论0701D04秦厚荣等3专业核心课程本课程的开课目的是让学生掌握代数数论的基础知识,主要是代数数论的经典结果。同时为其它的代数课程提供一些背景知识。主讲的内容有代数整数环中的素理想分解,理想类群和单位群,zeta函数和L-函数理论,局部域理论等等。预期学生能掌握代数数论的基本概念、几个基本的定理,对古典代数数论有较好的把握,同时对现代数论也有一定的了解。在课程群中处于核心地位,为其它课程
22、(例如交换代数,同调代数)提供背景和大量的实例,有助学生更好的学习和理解代数类的相关课程。本课程可以让学生真正体会到抽象代数,包括伽罗华理论的巨大威力,理解数学的美妙及意义。组合数学0701D06孙智伟3专业核心课程组合数学及图论是离散数学的主要组成部分,也有广泛的应用。鉴于学生已在离散数学课程中学过图论基本知识,本课程侧重于学生尚未系统学习的组合数学。 要求学生熟练掌握组合计数的基本原理及方法(包括容斥原理、反演公式、母函数方法、求解线性递归序列)以及重要的 Ramsey理论(包括图论形式的Szemeredi正则化引理), 并了解相异代表系、正交拉丁方、有限射影平面等概念及相关的基本定理,
23、以及现在活跃的加法组合理论。本课程培养同学们处理及研究组合问题的能力,旨在提高同学们相关的理论分析技能并为将来应用组合数学解决实际问题打好基础。复分析0701D07张高飞、杨飞3专业核心课程复分析主要讲授单复变中的解析函数理论,这是复变函数这门必修课的内容的进一步深化。复分析在其它学科,比如偏微分方程、代数几何、解析数论、代数拓扑、微分几何等领域都有着重要的应用。这门课程的内容主要包括以下几个方面:一、正规族理论和Riemann映射定理。主要内容包括正规族的定义和应用、Riemann映射定理、Riemann映射的边界对应、模函数及其应用。二、单叶函数的几何理论。主要内容包括Koebe偏差定理、
24、面积原理、Bieberbach定理、Koebe偏差定理的证明、Caratheodory核收敛定理和多连通区域上的共形映射。三、Schwarz引理及其应用。主要内容为Poincare度量及Schwarz引理、超双曲度量、广义Schwarz引理、Picard小定理、Ahlfors定理和Schottky定理。四、极值长度及共形模。主要内容包括极值长度的定义、比较原理、合成原理、对称原理、共形模的定义、模的极值问题。五、拟共形映射。主要内容为拟共形映射的几何定义、形式偏导数、拟共形映射的分析定义、拟共形映射的存在性定理、K拟共形映射的紧性、广义导数、拟共形映射的分析性质、拟圆周及拟共形反射和拟圆周的有
25、界折转刻画等。相信通过复分析这门学科的学习,学生会对这一古老而又生机勃勃的学科有着更深刻和前沿的认识。导出范畴0701D08黄兆泳3专业核心课程范畴理论是代数学中的一个重要分支,其中的许多概念和方法有助于我们对数学整体的理解。对范畴理论的研究,导致了大量新观点和新问题的提出,它们不仅在范畴理论本身是重要的,同时还在不同的具体范畴中提出了新的研究课题。这一点对于模范畴更为典型,而后者又反过来促进了范畴理论的发展。本课程主要讲述一般范畴和函子的概念和基本性质,并介绍两类重要的范畴:加法范畴和Abel范畴。本课程是大学本科专业选修课代数学的延伸,目的是为了使学生了解和掌握范畴理论的一些基本概念和方法
26、。这将对提高学生的数学素养和拓广视野是非常有益的。随机微分方程0701D13戴万阳3专业核心课程本课程的教学目的是使学生掌握随机微分方程的基本理论及方法及应用。希望学生掌握概率论及测度论、随机过程的基本理论及方法, 布朗运动,常微分方程及偏微分方程的基本理论和方法等。本课程主要介绍随机微分方程的基本理论及方法及应用,包括Ito积分,Ito公式及鞅表示定理,随机微分方程及其强解及弱解的定义,解的存在及唯一性定理,解的马氏性及强马氏性,Ito扩散过程的生成元及特征算子,Dynkin及Feyman-Kac公式,弱解及鞅问题,随机时间转换及Girsanov定理, 随机微分方程在(或及)边值问题、最优停
27、时及最优控制、滤波及金融数学中的应用(或交叉)。有限元方法0701D15武海军3方法实践类课程本课程介绍有限元方法的基本理论及基本方法,并通过数值实验初步掌握计算过程。本课程包括:椭圆型方程的有限元方法及其收敛性理论、后验误差分析、和自适应算法;抛物问题有限元方法;Maxwell方程有限元方法;多尺度有限元方法。有限维代数的表示理论0701D17杨东2交叉前沿类课程Gabriel在上世纪七十年代定义了箭图(quiver)并研究了某些特定箭图的表示,这可以看做是有限维代数表示理论的开端。在有限维代数表示理论发展的过程中先后及代数几何(导出等价、例外序列)、量子群(Ringel-Hall代数)、李
28、代数及代数群的表示理论(拟遗传代数、双中心性质)等建立了紧密的联系。箭图的表示理论一直是有限维代数表示理论中最重要的一个分支,并在新世纪通过丛代数及组合、代数几何、数学物理等建立了新的联系。本课程计划以箭图的表示理论为主线讲授有限维代数的表示理论。主要内容包括:箭图表示的定义及Krull-Schmidt性质、表示型的分类、Gabriel定理、Auslander-Reiten箭图、有限维代数的箭图实现。现代数学系列讲座0701D20国内外专家3交叉前沿类课程本课程的目的是向高年级本科生、研究生介绍现代数学的前沿研究领域和研究进展,我们将邀请国内外专家以学术报告、讲座的形式授课,内容包括现代分析学
29、、代数学、数论、现代几何学、拓扑学等基础数学各领域中的前沿课题,以及动力系统、数学物理等交叉领域中的前沿课题,或计算数学、应用数学、概率统计、运筹及控制领域中的前沿课题。数理逻辑基础070101D12喻良4专业核心课程本课程主要讲授哥德尔完全性和不完备性定理的证明。通过证明向学生介绍初步的证明论,递归论,模型论以及集合论知识,并且初步运用他们解决一些问题。三角范畴及微分分次范畴070101D15杨东4交叉前沿类课程三角范畴以及最重要的三角范畴:导出范畴由Grothendieck和Verdier于上世纪六十年代引入,在代数拓扑、代数几何、数学物理、表示论等数学分支中起着越来越重要的作用。本课程计
30、划以Keller对导出范畴的Morita定理的证明为主线引入三角范畴、微分分次范畴、三角范畴的微分分次强化、微分分次代数的导出范畴、标准函子和标准等价以及Koszul对偶。课程的最后部分将介绍最近几年微分分次代数在导出范畴研究中的一些应用,主要关于丛理论(cluster theory)、半倾斜理论(silting theory)和t-结构(t-structure)。变分法070104D16崔小军3交叉前沿类课程变分学是数学的一个重要分支,其在自然科学和社会科学中都有着广泛的应用。本课程将从以下几个部分对变分原理进行阐述。1.背景和历史发展过程:我们将阐述现代变分学的诞生,发展和完善过程。2.临
31、界点理论:我们将对Morse的临界点理论给以基本但完整的介绍。3.变分原理和Euler-Lagrange方程:这是变分法的根基。4.Riemann几何中的测地线及其变分。5.经典力学中的变分原理,Aubry-Mather理论简介。6相对论力学中的变分原理。7.随机力学中的变分原理。8.博弈论及变分原理在社会科学中的应用。我们不过分深入其中任何一个论题,但会阐述清楚变分思想在各个分支中的应用。几何分析070101D18徐兴旺、陈学长4交叉前沿类课程在介绍微分几何及黎曼几何一些必备基础知识之后,我们通过几何问题所提出的一个或多个课题进行细致的讲解,使得学生掌握一些解决该类问题的经典方法和技巧,从而
32、引导学生们直接进入研究课题的前沿或带领他们从事相关课题研究。我们主要讨论的课题是关于共形几何中带边紧黎曼流形上的预定(常数)平均曲率问题的解决。我们首先将会介绍共形正规坐标、共形Fermi坐标、紧流形上的共形Laplace的Green函数构造等基础知识,然后证明一个需要解决该预定曲率问题的充分条件(即类似于Yamabe问题的一个关键的Sobolev严格不等式),这需要我们根据流形内部即边界的几何性质分成若干种情形来详细讲述相关检验函数的构造来实现。该问题得到相对完善的结果也是在最近几年内的事。这属于相对比较新的课题,所以我们课程内容主要取材于数学期刊上的一些最新文献。最后我们会提及由该课题所激
33、发的相关课题的研究近况,同时强调本门课程讲述的内容对一些相关公开问题的未来解决会有极大的帮助(例如我们在这些课题上已完成的相关研究等)。代数几何II070101D16郭学军、纪庆忠4交叉前沿类课程该课程是代数几何I的后继课程,主要讲授算术代数几何的基本理论和基本方法. 该课程旨在培养学生抽象思维和逻辑推理能力以及初步的科研能力. 通过本课程的学习,要求学生掌握投射空间和仿射空间的高的概念、基本性质,多项式的高的性质,局部高、整体高及Weil高的概念及性质,可度量线丛, Siegel引理,Hermitian线性丛,曲线的约化,曲线的Mordell-Weil 定理和椭圆曲线的有限性定理等方面的基础
34、知识。统计学分析及软件应用070103D08高祖新3方法实践类课程本课程简明而系统地介绍了应用统计学研究生独立开展科研所必需的统计学理论、方法及应用,包括数据描述和处理、描述统计、推断统计、统计图表分析、基础统计分析、多元统计分析方法和案例研讨分析等,并全面而具体地学习目前国际上最为权威通用的专业统计软件SPSS的基本特点、功能和操作运用,配合课程学习同步的上机实习操作,使学生在熟练掌握SPSS统计分析软件操作应用的基础上,全面掌握各种常见的现代统计分析方法的基本原理和应用,真正提高其数据处理及统计分析的综合应用能力,为学生正确应用统计方法及软件进行科学研究,解决学习及科研工作中统计应用实际问
35、题打下坚实的基础,进而提高其统计应用、科研实践和创新思维相结合的科学素养。专业学位课:分析学、调和分析、泛函分析(续)、小波分析及其应用、李群和李代数、代数学、代数K理论、代数专题讨论、环的谱论、组合数学、导出范畴、代数几何II、有限维代数的表示理论、量子群、复流形、黎曼几何、几何分析、随机微分方程、有限元方法、常微分方程数值分析、网络最优化、凸优化、组合优化、数理逻辑II、遍历理论、数值最优化、非线性时间序列分析以上课程设置的指导思想是:各门课程充分体现本学科研究方向发展的新特点和新动态,力求反映其前沿性和交叉性,并保证较宽的学科专业覆盖面,以适应培养高素质、高水平博士生要求。六、培养方式
36、1、直博生基本学制为五年,需要修完硕士阶段、以及博士阶段所规定的全部学分、课程要求。第三学期末系学位委员会对直博生进行考核,内容包括思想表现、课程学习和科研能力,考核通过者继续作为博士生培养,不做硕士学位论文,不授予硕士学位,申请博士学位时,科研要求及普通博士生相同;考核不通过者转为硕士生培养。2、直博生在入学前明确指导教师,入学后由导师负责组织、成立指导小组,制定培养计划,博士生导师和指导小组负责全部培养工作。直博生在导师指导下须修读2-4门专业学位课程,其中导师讲授课程限1-2门。直博生在导师指导下选择学科前沿课题或有重要应用价值的课题进行研究。鼓励研究生在高水平的学术刊物上发表研究成果。
37、3、直博生应注重综合能力和素质的培养,指导教师应安排博士研究生参加讨论班并作报告,鼓励他们听取本方向和相关方向的学术讲座和学术报告,加深基础和扩大知识面,有意识地培养他们的创造能力、分析问题和解决问题的能力、语言表达和写作能力。七、考核方式1、公共课及专业基础课以笔试考核为主。2、专业课除笔试考核外,还可采用写专题综合报告,或结合口试进行,以考察研究生对专业知识的掌握情况、综合分析问题的能力、解决问题的思路等。3、博士资格考核:凡攻读博士学位的学生,必须通过博士资格考核。直博生在第四年必须参加资格考核。资格考核由系博士生资格考核小组根据南京大学数学系博士研究生资格考核方案负责实施。4、所有考核
38、(考试),都应包含对研究生掌握基础专业理论知识和相关学科知识的程度的考察,并重点考察他们分析问题、解决问题的能力和创新能力。八、学位论文学位论文是研究生培养的重要环节。学位论文的题目在导师的指导下选定。博士生的选题应是本方向的前沿和领先的课题。论文题目选定后,经历论文构思、查阅文献、搭写框架、推理证明、完成文稿等,应在研究生独立思考、独立工作的前题下,由导师指导完成。要求学位论文有独特的见解和新颖的结果,以获得优良的学位论文评价。九、答辩和学位授予研究生的学位论文完成后,首先由导师进行审阅。在导师审阅通过后,按照研究生院关于研究生学位论文答辩和申请学位的有关规定办理。指导教师要特别注意研究生的学位论文有哪些创造性成果,有哪些新观点、新概念、新方法,有哪些不足之处。导师还要对博士生和硕士生完成并投出的学术论文做到心中有数,高标准要求他们,以达到培养优秀研究生的目标。 31 / 31