高中数学函数的奇偶性说课稿.doc

上传人:叶*** 文档编号:35952742 上传时间:2022-08-24 格式:DOC 页数:7 大小:208KB
返回 下载 相关 举报
高中数学函数的奇偶性说课稿.doc_第1页
第1页 / 共7页
高中数学函数的奇偶性说课稿.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《高中数学函数的奇偶性说课稿.doc》由会员分享,可在线阅读,更多相关《高中数学函数的奇偶性说课稿.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、函数的奇偶性说课稿各位评委老师,上午好,我是 号考生叶新颖。今天我的说课题目是函数的奇偶性。首先我们来进行教材分析。一、教材分析函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。二教学目标1知识目标:理解函数的奇偶性和其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;2能力目标:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想3情感目

2、标:通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力 三教学重点和难点: 教学重点:函数的奇偶性和其几何意义教学难点:判断函数的奇偶性的方法与格式四、教学方法为了实现本节课的教学目标,在教法上我采取:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。五、学习方法1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完

3、成从感性认识到理性思维的质的飞跃。2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。六教学程序(一)创设情景,揭示课题 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 观察下列函数的图象,总结各函数之间的共性 00 1 1 0 1 通过讨论归纳:函数是定义域为全体实数的抛物线;函数是定义域为全体实数的折线;函数是定义域为非零实数的两支曲线,各函数之间的共性为图象关于轴对称观察一对关于轴对称的点的坐标有什么关系?归纳:若点在函数图象上,则相应的点也在函数图象上,即函数图象上横坐标互为相反数的点,它们的

4、纵坐标一定相等(二)互动交流 研讨新知函数的奇偶性定义:1偶函数一般地,对于函数的定义域内的任意一个,都有,那么就叫做偶函数(学生活动)依照偶函数的定义给出奇函数的定义2奇函数一般地,对于函数的定义域的任意一个,都有,那么就叫做奇函数注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个,则也一定是定义域内的一个自变量(即定义域关于原点对称)3具有奇偶性的函数的图象的特征偶函数的图象关于轴对称;奇函数的图象关于原点对称(三)质疑答辩,排难解惑,发展思维 例1判断下列函数是否是偶函数(1)(2)解

5、:函数不是偶函数,因为它的定义域关于原点不对称函数也不是偶函数,因为它的定义域为,并不关于原点对称例2判断下列函数的奇偶性(1) (2) (3) (4)解:(略)小结:利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定;作出相应结论:若;若例3判断下列函数的奇偶性:分析:先验证函数定义域的对称性,再考察解:(1)0且=,它具有对称性因为,所以是偶函数,不是奇函数(2)当0时,0,于是当0时,0,于是综上可知,在RR+上,是奇函数例4利用函数的奇偶性补全函数的图象教材P41思考题:规律:偶函数的图象关于轴对称;奇函数的图象关于原点对称说明:这也可以作为判

6、断函数奇偶性的依据例5已知是奇函数,在(0,+)上是增函数证明:在(,0)上也是增函数证明:(略)小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致(四)巩固深化,反馈矫正(1)课本P42 练习12 P46 B组题的123(2)判断下列函数的奇偶性,并说明理由(五)归纳小结,整体认识本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质(六)设置问题,留下悬念 1书面作业:课本P46习题A组13910题 2设0时, 试问:当0时,的表达式是什么?解:当0时,0,所以,又因为是奇函数,所以7 / 7

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 期刊短文 > 信息管理

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁