中考数学因动点产生的平行四边形问题练习(12页).doc

上传人:1595****071 文档编号:35596808 上传时间:2022-08-22 格式:DOC 页数:12 大小:498.50KB
返回 下载 相关 举报
中考数学因动点产生的平行四边形问题练习(12页).doc_第1页
第1页 / 共12页
中考数学因动点产生的平行四边形问题练习(12页).doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《中考数学因动点产生的平行四边形问题练习(12页).doc》由会员分享,可在线阅读,更多相关《中考数学因动点产生的平行四边形问题练习(12页).doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-中考数学因动点产生的平行四边形问题练习-第 12 页因动点产生的平行四边形问题京翰中考网试题()例1 2013年上海市松江区中考模拟第24题如图1,已知抛物线yx2bxc经过A(0, 1)、B(4, 3)两点 (1)求抛物线的解析式;(2)求tanABO的值;(3)过点B作BCx轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标图1 动感体验请打开几何画板文件名“13松江24”,拖动点N在直线AB上运动,可以体验到,以M、N、C、B为顶点的平行四边形有4个,符合MN在抛物线的对称轴的左侧的平行四边形MNCB只有一个请打开

2、超级画板文件名“13松江24”,拖动点N在直线AB上运动,可以体验到,MN有4次机会等于3,这说明以M、N、C、B为顶点的平行四边形有4个,而符合MN在抛物线的对称轴的左侧的平行四边形MNCB只有一个思路点拨1第(2)题求ABO的正切值,要构造包含锐角ABO的角直角三角形2第(3)题解方程MNyMyNBC,并且检验x的值是否在对称轴左侧满分解答(1)将A(0, 1)、B(4, 3)分别代入yx2bxc,得 解得,c1所以抛物线的解析式是(2)在RtBOC中,OC4,BC3,所以OB5如图2,过点A作AHOB,垂足为H在RtAOH中,OA1,所以 图2所以, 在RtABH中,(3)直线AB的解析

3、式为设点M的坐标为,点N的坐标为,那么当四边形MNCB是平行四边形时,MNBC3解方程x24x3,得x1或x3因为x3在对称轴的右侧(如图4),所以符合题意的点M的坐标为(如图3)图3 图4考点伸展第(3)题如果改为:点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果M、N、B、C为顶点的四边形是平行四边形,求点M的坐标那么求点M的坐标要考虑两种情况:MNyMyN或MNyNyM由yNyM4xx2,解方程x24x3,得(如图5)所以符合题意的点M有4个:,图5例2 2012年福州市中考第21题如图1,在RtABC中,C90,AC6,BC8,动点P从点A开始沿边AC向点C以每秒1个单位

4、长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD/BC,交AB于点D,联结PQ点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t0)(1)直接用含t的代数式分别表示:QB_,PD_;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长图1 图2动感体验请打开几何画板文件名“12福州21”,拖动左图中的点P运动,可以体验到,P

5、Q的中点M的运动路径是一条线段拖动右图中的点Q运动,可以体验到,当PQ/AB时,四边形PDBQ为菱形请打开超级画板文件名“12福州21”,拖动点Q向上运动,可以体验到,PQ的中点M的运动路径是一条线段点击动画按钮的左部,Q的速度变成1.07,可以体验到,当PQ/AB时,四边形PDBQ为菱形点击动画按钮的中部,Q的速度变成1.思路点拨1菱形PDBQ必须符合两个条件,点P在ABC的平分线上,PQ/AB先求出点P运动的时间t,再根据PQ/AB,对应线段成比例求CQ的长,从而求出点Q的速度2探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径满分解答(1)QB82t,PD(2)如图

6、3,作ABC的平分线交CA于P,过点P作PQ/AB交BC于Q,那么四边形PDBQ是菱形过点P作PEAB,垂足为E,那么BEBC8在RtABC中,AC6,BC8,所以AB10 图3在RtAPE中,所以当PQ/AB时,即解得所以点Q的运动速度为(3)以C为原点建立直角坐标系如图4,当t0时,PQ的中点就是AC的中点E(3,0)如图5,当t4时,PQ的中点就是PB的中点F(1,4)直线EF的解析式是y2x6如图6,PQ的中点M的坐标可以表示为(,t)经验证,点M(,t)在直线EF上所以PQ的中点M的运动路径长就是线段EF的长,EF图4 图5 图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是

7、设二次函数:当t2时,PQ的中点为(2,2)设点M的运动路径的解析式为yax2bxc,代入E(3,0)、F(1,4)和(2,2),得 解得a0,b2,c6所以点M的运动路径的解析式为y2x6例3 2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4)以A为顶点的抛物线yax2bxc过点C动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动点P、Q的运动速度均为每秒1个单位,运动时间为t秒过点P作PEAB交AC于点E(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EFAD于F,交

8、抛物线于点G,当t为何值时,ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值图1动感体验请打开几何画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,ACG的面积最大观察右图,我们构造了和CEQ中心对称的FQE和ECH,可以体验到,线段EQ的垂直平分线可以经过点C和F,线段CE的垂直平分线可以经过点Q和H,因此以C、Q、E、H为顶点的菱形有2个请打开超级画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,即t=2

9、,ACG的面积取得最大值1观察CQ,EQ,EC的值,发现以C、Q、E、H为顶点的菱形有2个点击动画按钮的左部和中部,可得菱形的两种准确位置。思路点拨1把ACG分割成以GE为公共底边的两个三角形,高的和等于AD2用含有t的式子把图形中能够表示的线段和点的坐标都表示出来3构造以C、Q、E、H为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在满分解答(1)A(1, 4)因为抛物线的顶点为A,设抛物线的解析式为ya(x1)24,代入点C(3, 0),可得a1所以抛物线的解析式为y(x1)24x22x3(2)因为PE/BC,所以因此所以点E的横坐标为将代入抛物线的解析式,y(x1)24所以点G的纵坐

10、标为于是得到因此所以当t1时,ACG面积的最大值为1(3)或考点伸展第(3)题的解题思路是这样的:因为FE/QC,FEQC,所以四边形FECQ是平行四边形再构造点F关于PE轴对称的点H,那么四边形EHCQ也是平行四边形再根据FQCQ列关于t的方程,检验四边形FECQ是否为菱形,根据EQCQ列关于t的方程,检验四边形EHCQ是否为菱形如图2,当FQCQ时,FQ2CQ2,因此整理,得解得,(舍去)如图3,当EQCQ时,EQ2CQ2,因此整理,得所以,(舍去)图2 图3例4 2011年上海市中考第24题已知平面直角坐标系xOy(如图1),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO

11、MA二次函数yx2bxc的图象经过点A、M(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标图1动感体验请打开几何画板文件名“11上海24”,拖动点B在y轴上点A下方运动,四边形ABCD保持菱形的形状,可以体验到,菱形的顶点C有一次机会落在抛物线上思路点拨1本题最大的障碍是没有图形,准确画出两条直线是基本要求,抛物线可以不画出来,但是对抛物线的位置要心中有数2根据MOMA确定点M在OA的垂直平分线上,并且求得点M的坐标,是整个题目成败的一个决定性步骤3第(3)题求点

12、C的坐标,先根据菱形的边长、直线的斜率,用待定字母m表示点C的坐标,再代入抛物线的解析式求待定的字母m满分解答(1)当x0时,所以点A的坐标为(0,3),OA3如图2,因为MOMA,所以点M在OA的垂直平分线上,点M的纵坐标为将代入,得x1所以点M的坐标为因此(2)因为抛物线yx2bxc经过A(0,3)、M,所以解得,所以二次函数的解析式为(3)如图3,设四边形ABCD为菱形,过点A作AECD,垂足为E在RtADE中,设AE4m,DE3m,那么AD5m因此点C的坐标可以表示为(4m,32m)将点C(4m,32m)代入,得解得或者m0(舍去)因此点C的坐标为(2,2) 图2 图3考点伸展如果第(

13、3)题中,把“四边形ABCD是菱形”改为“以A、B、C、D为顶点的四边形是菱形”,那么还存在另一种情况:如图4,点C的坐标为图4 例5 2011年江西省中考第24题将抛物线c1:沿x轴翻折,得到抛物线c2,如图1所示(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E当B、D是线段AE的三等分点时,求m的值;在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在

14、,请说明理由图1动感体验请打开几何画板文件名“11江西24”,拖动点M向左平移,可以体验到,四边形ANEM可以成为矩形,此时B、D重合在原点观察B、D的位置关系,可以体验到,B、D是线段AE的三等分点,存在两种情况思路点拨1把A、B、D、E、M、N六个点起始位置的坐标罗列出来,用m的式子把这六个点平移过程中的坐标罗列出来2B、D是线段AE的三等分点,分两种情况讨论,按照AB与AE的大小写出等量关系列关于m的方程3根据矩形的对角线相等列方程满分解答(1)抛物线c2的表达式为(2)抛物线c1:与x轴的两个交点为(1,0)、(1,0),顶点为抛物线c2:与x轴的两个交点也为(1,0)、(1,0),顶

15、点为抛物线c1向左平移m个单位长度后,顶点M的坐标为,与x轴的两个交点为、,AB2抛物线c2向右平移m个单位长度后,顶点N的坐标为,与x轴的两个交点为、所以AE(1m)(1m)2(1m)B、D是线段AE的三等分点,存在两种情况:情形一,如图2,B在D的左侧,此时,AE6所以2(1m)6解得m2情形二,如图3,B在D的右侧,此时,AE3所以2(1m)3解得图2 图3 图4如果以点A、N、E、M为顶点的四边形是矩形,那么AEMN2OM而OM2m23,所以4(1m)24(m23)解得m1(如图4)考点伸展第(2)题,探求矩形ANEM,也可以用几何说理的方法:在等腰三角形ABM中,因为AB2,AB边上

16、的高为,所以ABM是等边三角形同理DEN是等边三角形当四边形ANEM是矩形时,B、D两点重合因为起始位置时BD2,所以平移的距离m1例6 2010年山西省中考第26题在直角梯形OABC中,CB/OA,COA90,CB3,OA6,BA分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD5,OE2EB,直线DE交x轴于点F求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由图1 图2动

17、感体验请打开几何画板文件名“10山西26”,拖动点M可以在直线DE上运动分别双击按钮“DO、DM为邻边”、“ DO、DN为邻边”和“DO为对角线”可以准确显示菱形思路点拨1第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础2讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类,DO与DM、DO与DN为邻边满分解答(1)如图2,作BHx轴,垂足为H,那么四边形BCOH为矩形,OHCB3在RtABH中,AH3,BA,所以BH6因此点B的坐标为(3,6)(2) 因为OE2EB,所以,E(2,4)设直线DE的解析式为ykxb,代入D(0,5),E

18、(2,4),得 解得,所以直线DE的解析式为(3) 由,知直线DE与x轴交于点F(10,0),OF10,DF如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点此时点M的坐标为(5,),点N的坐标为(5,)如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8)如图5,当DO、DM为菱形的邻边时,NO5,延长MN交x轴于P由NPODOF,得,即解得,此时点N的坐标为图3 图4 考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形图5 图6例7 2009年江西省中考第24题如图1,抛物线与x轴相交于A、B两点(点A在点B

19、的左侧),与y轴相交于点C,顶点为D(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF/DE交抛物线于点F,设点P的横坐标为m用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?设BCF的面积为S,求S与m的函数关系图1动感体验 请打开几何画板文件名“09江西24”,拖动点P在BC上运动,可以体验到,四边形PEDF可以成为平行四边形观察BCF的形状和S随m变化的图象,可以体验到,S是m的二次函数,当P是BC的中点时,S取得最大值思路点拨1数形结合,用函数的解析式表示图象上点的坐标,用

20、点的坐标表示线段的长2当四边形PEDF为平行四边形时,根据DE=FP列关于m的方程3把BCF分割为两个共底FP的三角形,高的和等于OB满分解答(1)A(1,0),B(3,0),C(0,3)抛物线的对称轴是x1(2)直线BC的解析式为yx3把x1代入yx3,得y2所以点E的坐标为(1,2)把x1代入,得y4所以点D的坐标为(1,4)因此DE=2因为PF/DE,点P的横坐标为m,设点P的坐标为,点F的坐标为,因此当四边形PEDF是平行四边形时,DE=FP于是得到解得,(与点E重合,舍去)因此,当m=2时,四边形PEDF是平行四边形时设直线PF与x轴交于点M,那么OM+BM=OB=3因此m的变化范围是0m3图2 图3考点伸展在本题条件下,四边形PEDF可能是等腰梯形吗?如果可能,求m的值;如果不可能,请说明理由如图4,如果四边形PEDF是等腰梯形,那么DG=EH,因此于是解得(与点CE重合,舍去),(与点E重合,舍去)因此四边形PEDF不可能成为等腰梯形图4

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁