中国古代的趣味数学(5页).doc

上传人:1595****071 文档编号:35570935 上传时间:2022-08-22 格式:DOC 页数:5 大小:140KB
返回 下载 相关 举报
中国古代的趣味数学(5页).doc_第1页
第1页 / 共5页
中国古代的趣味数学(5页).doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《中国古代的趣味数学(5页).doc》由会员分享,可在线阅读,更多相关《中国古代的趣味数学(5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-中国古代的趣味数学-第 5 页中国古代的趣味数学简析几个典型的古代数学问题夏超(马克思主义教育学院思想政治教育专业 学号:1012279)关键词:鸡兔同笼 百鸡问题 孙子定理 数学在中国拥有悠久的历史,在古人的智慧中,我们可以发现数学之美,探寻数学之趣,数学的好玩之处,并不限于数学游戏。数学中有些极具实用意义的内容,包含了深刻的奥妙,发人深思,使人惊讶。中国古代的数学广泛应用于各个领域,对中国古代的农业、天文学等的发展作出了重大贡献。其中的一些脍炙人口的趣味小问题也让我们在探究中发现数学之美。1. 鸡兔同笼问题鸡兔同笼问题是我国古代一道经典的数学趣题。它记载于大约1500年前的孙子算经中,书

2、中是这样描述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这句话的意思是:若干只鸡兔同在一个笼子里,从上面数,有三十五个头:从下面数,有九十四只脚。求笼中各有几只鸡和兔?用解法一(假设法):已知鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,即,将兔子看做两只脚的鸡,鸡兔总的脚数是352=70(只),比题中说的94只要少24只。可知这24只脚是兔子,因此有兔子242=12(只)。所以有鸡35-12=23(只)。解:假设全是鸡: 352=70(只)比总脚数少:94-70=24(只)它们脚数的差:4-2=2(只) 因此有兔子:242=12(只)鸡:35-12=23(只) 解法二

3、(方程法):解:设兔有x只,则鸡有35-x只。4x+2(35-x)=942x=24x=12 35-12=23(只) 故:有鸡23只,兔12只。 除此之外还有解法3:(兔的脚数总只数总脚数)(兔的脚数鸡的脚数) =鸡的只数 总只数鸡的只数=兔的只数 解法4( 总脚数鸡的脚数总只数)(兔的脚数鸡的脚数) =兔的只数 总只数兔的只数=鸡的只数 解法5:总脚数2总头数=兔的只数 总只数兔的只数=鸡的只数 解法4: 鸡的只数=(4鸡兔总只数-鸡兔总脚数)2 兔的只数=鸡兔总只数-鸡的只数6解法7兔总只数=(鸡兔总脚数-2鸡兔总只数)2 鸡的只数=鸡兔总只数-兔总只数 一个简单的鸡兔同笼问题却能有如此多的

4、解法,是不是很奇妙呢? 通过对一个简单的数学问题的剖析,你是否从中发现了探索的乐趣呢?在探索的过程中你是否体味到数学解题思想的变幻之美呢?百鸡问题记载于中国古代约5-6世纪成书的张丘建算经中,该问题导致的三元不定方程组开创了“一问多答的先例”这是过去中国古算书书中所没有的,体现了中国数学的发展。书中写道:今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?意思是:公鸡每只值5文钱,母鸡每只值三文钱,而3 只小鸡值1 文钱。现在用100 文钱买100 只鸡,问:这100 只鸡中公鸡、母鸡和小鸡各有多少只?,原书的答案是:“答曰:鸡翁四,值钱二十;鸡母十八,值

5、钱五十四;鸡鶵七十八,值钱二十六。又答:鸡翁八,值钱四十;鸡 母十一,值钱三十三,鸡鶵八十一,值钱二十七。又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十 四,值钱二十八。 ”这个问题流传很广,解法很多,但从现代数学观点来看,它实际是一个求不定方成整数解的问题。解:设公鸡、母鸡、小鸡分别为x、y、z只。则,由题意知: xyz 100 5x3y(1/3)z 100 令3得: 7x4y100所以y=(100-7x)/4=25-2x+x/4令x/4=t, (t为整数)所以x=4t 把x=4t代入7x+4y=100得到:y=25-7t 易得z=75+3t 所以:x=4t y=25-7t z=75+

6、3t 因为x,y,z大于等于0所以4t025-7t075+3t0解之得:0t25/7又t为整数 所以t=0,1,2,3 当t=0时 x=0,y=25,z=75 当t=1时 x 4;y 18;z 78 当t=2时 x 8;y 11;z 81 当t=3时 x 12;y 4;z 84 小小的一个百鸡问题让我们看到了古人数学智慧,一题多答的解题方法也让我们感受到数学严谨之外多变的魅力。3.孙子定理孙子定理来源于物不知其数问题,出自于一千六百年前我国古代数学名著孙子算经。原题为:今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用

7、7除余2。求这个数。这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。另一个著名的例子:韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n

8、=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+ 15m,分别把m=1,2,代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。其实,我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的算法统宗(1593年)中就用四句很通俗的口诀暗示了此题的解法:三人同行七十稀

9、,五树梅花甘一枝,七子团圆正半月,除百零五便得知。正半月暗指15。除百零五的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:702+213+154=263,263=2105+53,所以,这队士兵至少有53人。上面的方法所依据的理论,在中国称之为孙子定理,它充满诗意的解题方法让我深深体味到数学之美。中国古代的数学趣味问题用它多角度的解题方式锻炼了我们的思维方式,也让我们在思维的转换中发现数学的乐趣,体味到数学之美。 参考文献:少年百科

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁