2022青岛版七年级数学优质公开课获奖教案设计模板.docx

上传人:八戒 文档编号:35478022 上传时间:2022-08-21 格式:DOCX 页数:19 大小:21.03KB
返回 下载 相关 举报
2022青岛版七年级数学优质公开课获奖教案设计模板.docx_第1页
第1页 / 共19页
2022青岛版七年级数学优质公开课获奖教案设计模板.docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022青岛版七年级数学优质公开课获奖教案设计模板.docx》由会员分享,可在线阅读,更多相关《2022青岛版七年级数学优质公开课获奖教案设计模板.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022青岛版七年级数学优质公开课获奖教案设计模板 2022青岛版七年级数学教案模板1 教学目的 让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。 重点、难点 1.重点:通过分析图形问题中的数量关系,建立方程解决问题。 2.难点:找出“等量关系”列出方程。 教学过程 一、复习提问 1.列一元一次方程解应用题的步骤是什么? 2.长方形的周长公式、面积公式。 二、新授 问题3.用一根长60厘米的铁丝围成一个长方形。 (1)使长方形的宽是长的专,求这个长方形的长和宽。 (2)使长方形的宽比长少4厘米,求这个长方形的面积。 (3)比较(1)、(2)所得两个长方形面积的大小,还能围出

2、面积更大的长方形吗? 不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。 (3)当长方形的长为18厘米,宽为12厘米时 长方形的面积=1812=216(平方厘米) 当长方形的长为17厘米,宽为13厘米时 长方形的面积=221(平方厘米) (1)中的长方形面积比(2)中的长方形面积小。 问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积呢?并加以验证。 实际上,如果两个正数的和不变,当这两个数相

3、等时,它们的积,通过以后的学习,我们就会知道其中的道理。 三、巩固练习 教科书第14页练习1、2。 第l题等量关系是:圆柱的体积=长方体的体积。 第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。 四、小结 运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。 五、作业 教科书第16页,习题6.3.1第1、2、3。 2022青岛版七年级数学教案模板2 教学目的 通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。 重点、难点 1.重点:探索这些实际

4、问题中的等量关系,由此等量关系列出方程。 2.难点:找出能表示整个题意的等量关系。 教学过程 一、复习 1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金年利率年数 本利和=本金利息年数+本金 2.商品利润等有关知识。 利润=售价-成本 ; =商品利润率 二、新授 问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元? 利息-利息税=48.6 可设小明爸爸前年存了x元,那么二年后共得利息为 2.43%X2,利息税为2.43%X220% 根据等量关系,得 2.43%x2-2.43%

5、x220%=48.6 问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得 2.43%x280%=48.6 解方程,得 x=1250 例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元? 大家想一想这15元的利润是怎么来的? 标价的80%(即售价)-成本=15 若设这种服装每件的成本是x元,那么 每件服装的标价为:(1+40%)x 每件服装的实际售价为:(1+40%)x80% 每件服装的利润为:(1+40%)x80%-x 由等量关系,列出方程: (1+40%)

6、x80%-x=15 解方程,得 x=125 答:每件服装的成本是125元。 三、巩固练习 教科书第15页,练习1、2。 四、小结 当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。 五、作业 教科书第16页,习题6.3.1,第4、5题。 2022青岛版七年级数学教案模板3 教学目的 借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。 重点、难点 1.重

7、点:列一元一次方程解决有关行程问题。 2.难点:间接设未知数。 教学过程 一、复习 1.列一元一次方程解应用题的一般步骤和方法是什么? 2.行程问题中的基本数量关系是什么? 路程=速度时间 速度=路程 / 时间 二、新授 例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远? 画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。 1.坐公共汽车行了多少路程?乘

8、的士行了多少路程? 2.乘公共汽车用了多少时间,乘出租车用了多少时间? 3.如果都乘公共汽车到火车站要多少时间? 4,等量关系是什么? 如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。 可设公共汽车从小张家到火车站要x小时。 设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。 三、巩固练习 教科书第17页练习1、2。 四、小结 有关行程问题的应用题常见的一个数量关系:路程=速度时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未

9、知数。 四、作业 教科书习题6.3.2,第1至5题。 2022青岛版七年级数学教案模板4 教学目的 1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。 2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。 重点、难点 重点:工程中的工作量、工作的效率和工作时间的关系。 难点:把全部工作量看作“1”。 教学过程 一、复习提问 1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全 部工作量的多少? 2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成 全部工作量的多少? 3.工作

10、量、工作效率、工作时间之间有怎样的关系? 二、新授 阅读教科书第18页中的问题6。 分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。 2.怎样用列方程解决这个问题?本题中的等量关系是什么? 等量关系是:师傅做的工作量+徒弟做的工作量=1) 先要求出师傅与徒弟各完成的工作量是多少? 两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2 师傅完成的工作量为= ,徒弟完成的工作量为= 所以他们两人完成的工作量相同,因此每人各得225元。 三

11、、巩固练习 一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现 由甲独做10小时; 请你提出问题,并加以解答。 例如 (1)剩下的乙独做要几小时完成? (2)剩下的由甲、乙合作,还需多少小时完成? (3)乙又独做5小时,然后甲、乙合做,还需多少小时完成? 四、小结 1.本节课主要分析了工作问题中工作量、工作效率和工作时间之 间的关系,即 工作量=工作效率工作时间 工作效率= 工作时间= 2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。 五、作业 教科书习题6.3.3第1、2题。 2022青岛版七年级数学教案模板5 教学目标 1.了解的意义,会

12、求有理数的; 2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力. 3.初步认识对立统一的规律。 教学建议 一、重点、难点分析 本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。 二、

13、知识结构 的定义 的性质及其判定 的应用 三、教法建议 这节课教学的主要内容是互为的概念。 由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。 四、的相关知识 1.的意义 (1)只有符号不同的两个数叫做互为,如-1999与1999互为。 (2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。 (3)0的是0。也只有0的是它的本身。 (4)是表示两个数的相互关系,不能单独存在。 2.的表示 在一个

14、数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。 3.的特性 若 互为,则 ,反之若 ,则 互为。 4.多重符号化简 (1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。 (2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则 果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。 例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。 (一) 一、素质教育目标 (一)知识教学点 1.了解:互为的几何意义.

15、2.掌握:给出一个数能求出它的. (二)能力训练点 1.训练学生会利用数轴采用数形结合的方法解决问题. 2.培养学生自己归纳总结规律的能力. (三)德育渗透点 1.通过解释的几何意义,进一步渗透数形结合的思想. 2.通过求一个数的,使学生进一步认识对应、统一规律. (四)美育渗透点 1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美. 2.通过简化一个数的符号,使学生进一步体会数学的简洁美. 二、学法引导 1.教学方法:利用引导发现法,教师注意过渡导语 的设置,充分发挥学生的主体地位. 2.学生学法:感性认识理性认识练习反馈总结. 三、重点、难点、疑点及解决办法 1.重点:

16、求已知数的. 2.难点:根据的意义化简符号. 四、课时安排 1课时 五、教具学具准备 投影仪、三角板、自制胶片. 六、师生互动活动设计 学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈. 七、教学步骤 (一)探索新知,导入 新课 1.互为的概念的引出 演示活动:要一个学生向前走5步,向后走5步. 提出问题“如果向前为正,向前走5步,向后走5步各记作什么? 学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步. 板书 +5,-5 师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为. 板书2.3 【教法

17、说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为. 师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练) 师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答) 板书只有符号不同的两个数,其中一个叫另一个的. 【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再

18、观察两个数本身的特点.更形象直观地引导学生自己得出的概念. 2.理解概念 (出示投影1) 判断:(1)-5是5的( ) (2)5是-5的( ) (3)与互为() (4)-5是( ) 学生活动:学生讨论. 【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力. 师:0的是0. (出示投影2) 1.在前面画的数轴上任意标出4个数,并标出它们的. 2.分别说出9,-7,0,-0.2的. 3.指出-2.4,-1.7,1各是什么数的? 4.的是什么? 学生活动:1题同桌互相订正,2、3题抢答. 【教法说明】1题注意培养学生运用数形结合的方法理解的概念

19、,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为.2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是.” 板书a的是-a. 师:的是,可表示任意数正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号. 提出问题:若把分别换成+5,-7,0时,这些数的怎样表示? 提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少? 学生活动:讨论、分析、回答. 【教法说明】利用的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时

20、提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习 (出示投影3) 1.是_的,. 2.是_的,. 3.是_的,. 4.是_的,. 学生活动:思考后口答. 学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢? 板书 如: 学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果. 【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时

21、也暗示学生在做题时不是单纯地演练,一定要注意规律的总结. 巩固练习: 1.例题2 简化-(+3)-(-4)的符号. 2.简化下列各数的符号 3.自己编题 学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度. (三)归纳小结 师:我们这节课学习了,归纳如下: 1._的两个数,我们说其中一个是另一个的. 2.表示求的_,表示_. 学生活动:空中内容由学生填出. 【教法说明】通过问题形式归纳出本节的重点. (四)回顾反馈 1.-1.6是_的, _的是0.3. 2.下列几对数中互为的一对为( )

22、. A.和B.与C.与 3.5的是_;的是_;的是_. 4.若,则;若,则. 5.若是负数,则是_数;若是负数,则是_数. 学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答. 【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高. 八、随堂练习 2.选择题 (1)下列说法中,正确的是() A.一个数的一定是负数 B.两个符号不同的数一定是 C.等于本身的数只有零 D.的是-2 (2)下列各组九中,是互为的组数有() 和-(-1)和+(-1) -(-2)和+(+2) 和 A.4组 B.3组 C.2组 D.1组 (3)下列语句中叙述正确的是() A.是正数 B.如果,那么 C.如果,那么 D.如果是负数,那么是正数 九、布置作业 (一)必做题:课本第61页A组2、3. (二)选做题:课本第62页B组1、2. 十、板书设计 随堂练习答案 1.略 2.C B D 作业 答案 (一)必做题: 1.(1)1.6,0.2,(2),3 2.16,-20,50,8.07, (二)选作题: 1.(1)6,(2)9 2.(1);(2). 5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁