《沪教版七年级数学优质公开课获奖教案设计最新例文.docx》由会员分享,可在线阅读,更多相关《沪教版七年级数学优质公开课获奖教案设计最新例文.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学优质公开课获奖教案设计最新例文 沪教版七年级数学教案最新例文1 教材内容 1.本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用: 二次根式是在学完了八年级下册第十七章反比例正函数、第十八章勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. 教学目标 1.知识与技能 (1)理解二次根式的概念. (2)理解 (a0)是一个非负数,( )2=a(a0), =a(a0). (3)掌握 = (a0,b0), = ; = (a0,b>0), = (a0,b>0). (4)了解最简二
2、次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简. (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算. (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简. (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观 通过本单元的学习培养
3、学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力. 教学重点 1.二次根式 (a0)的内涵. (a0)是一个非负数;( )2=a(a0); =a(a0)及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点 1.对 (a0)是一个非负数的理解;对等式( )2=a(a0)及 =a(a0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键 1.潜移默化地培养学生从具体到一般的推理能力,突出重点,
4、突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神. 单元课时划分 本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时 教学活动、习题课、小结 2课时 沪教版七年级数学教案最新例文2 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用 (a0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键 1.重点:形如 (a0)的式子叫做二次根式的概念; 2.难点与关键:利用“ (a0)”解决具体问题. 教学过程
5、 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是_. 问题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB边的长是_. 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_. 老师点评: 问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ). 问题2:由勾股定理得AB= 问题3:由方差的概念得S= . 二、探索新知 很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方
6、根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a0)的式子叫做二次根式,“ ”称为二次根号. (学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a0, 有意义吗? 老师点评:(略) 例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x0,y0). 分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0. 解:二次根式有: 、 (x>0)、 、- 、 (x0,y0);不是二次根式的有: 、 、 、 . 例2.当x是多少时, 在实数范围内有意义? 分析:由二次根式的定义
7、可知,被开方数一定要大于或等于0,所以3x-10, 才能有意义. 解:由3x-10,得:x 当x 时, 在实数范围内有意义. 三、巩固练习 教材P练习1、2、3. 四、应用拓展 例3.当x是多少时, + 在实数范围内有意义? 分析:要使 + 在实数范围内有意义,必须同时满足 中的0和 中的x+10. 解:依题意,得 由得:x- 由得:x-1 当x- 且x-1时, + 在实数范围内有意义. 例4(1)已知y= + +5,求 的值.(答案:2) (2)若 + =0,求a2004+b2004的值.(答案: ) 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1.形如 (a0)的式子叫做二次根式,
8、“ ”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业 1.教材P8复习巩固1、综合应用5. 2.选用课时作业设计. 3.课后作业:同步训练 第一课时作业设计 一、选择题 1.下列式子中,是二次根式的是( ) A.- B. C. D.x 2.下列式子中,不是二次根式的是( ) A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是( ) A.5 B. C. D.以上皆不对 二、填空题 1.形如_的式子叫做二次根式. 2.面积为a的正方形的边长为_. 3.负数_平方根. 三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为
9、0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义? 3.若 + 有意义,则 =_. 4.使式子 有意义的未知数x有( )个. A.0 B.1 C.2 D.无数 5.已知a、b为实数,且 +2 =b+4,求a、b的值. 第一课时作业设计答案: 一、1.A 2.D 3.B 二、1. (a0) 2. 3.没有 三、1.设底面边长为x,则0.2x2=1,解答:x= . 2.依题意得: , 当x>- 且x0时, +x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-4 沪教版七年级数学教案最新例文3 教学内容 1. (a0)是一个
10、非负数; 2.( )2=a(a0). 教学目标 理解 (a0)是一个非负数和( )2=a(a0),并利用它们进行计算和化简. 通过复习二次根式的概念,用逻辑推理的方法推出 (a0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a0);最后运用结论严谨解题. 教学重难点关键 1.重点: (a0)是一个非负数;( )2=a(a0)及其运用. 2.难点、关键:用分类思想的方法导出 (a0)是一个非负数;用探究的方法导出( )2=a(a0). 教学过程 一、复习引入 (学生活动)口答 1.什么叫二次根式? 2.当a0时, 叫什么?当a0时, 有意义吗? 老师点评(略). 二、探究新知
11、议一议:(学生分组讨论,提问解答) (a0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a0)是一个非负数. 做一做:根据算术平方根的意义填空: ( )2=_;( )2=_;( )2=_;( )2=_; ( )2=_;( )2=_;( )2=_. 老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4. 同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以 ( )2=a(a0) 例1 计算 1.( )2 2.(3 )2 3.( )2 4.( )2 分析:我们可以直接利用( )2=
12、a(a0)的结论解题. 解:( )2 = ,(3 )2 =32( )2=325=45, ( )2= ,( )2= . 三、巩固练习 计算下列各式的值: ( )2 ( )2 ( )2 ( )2 (4 )2 四、应用拓展 例2 计算 1.( )2(x0) 2.( )2 3.( )2 4.( )2 分析:(1)因为x0,所以x+1>0;(2)a20;(3)a2+2a+1=(a+1)0; (4)4x2-12x+9=(2x)2-22x3+32=(2x-3)20. 所以上面的4题都可以运用( )2=a(a0)的重要结论解题. 解:(1)因为x0,所以x+1>0 ( )2=x+1 (2)a20,
13、( )2=a2 (3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10 , =a2+2a+1 (4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2 又(2x-3)20 4x2-12x+90,( )2=4x2-12x+9 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结 本节课应掌握: 1. (a0)是一个非负数; 2.( )2=a(a0);反之:a=( )2(a0). 六、布置作业 1.教材P8 复习巩固2.(1)、(2) P9 7. 2.选用课时作业设计. 3.课后作业:同步训练 沪教版七年级数学教
14、案最新例文4 一元二次方程 1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a0),分清二次项及其系数、一次项及其系数与常数项等概念. 2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解. 重点 通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a0)和一元二次方程的解等概念,并能用这些概念解决简单问题. 难点 一元二次方程及其二次项系数、一次项系数和常数项的识别. 活动1复习旧知 1.什么是方程?你能举一个方程的例子吗? 2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x-1(2)mx+n=0
15、(3)1x+1=0(4)x2=1 3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念. A.0B.1C.2D.3 活动2探究新知 根据题意列方程. 1.教材第2页问题1. 提出问题: (1)正方形的大小由什么量决定?本题应该设哪个量为未知数? (2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页问题2. 提出问题: (1)本题中有哪些量?由这些量可以得到什么? (2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛
16、多少场? (3)如果有x个队参赛,一共比赛多少场呢? 3.一个数比另一个数大3,且两个数之积为0,求这两个数. 提出问题: 本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3归纳概念 提出问题: (1)上述方程与一元一次方程有什么相同点和不同点? (2)类比一元一次方程,我们可以给这一类方程取一个什么名字? (3)归纳一元二次方程的概念. 1.一元二次方程:只含有_个未知数,并且未知数的次数是_,这样的_方程,叫做一元二次方程. 2.一元二次方程的一般形式是ax2+bx+c=0(a0),其中ax2是二次项,a
17、是二次项系数;bx是一次项,b是一次项系数;c是常数项. 提出问题: (1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么? (2)为什么要限制a0,b,c可以为0吗? (3)2x2-x+1=0的一次项系数是1吗?为什么? 3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根). 活动4例题与练习 例1在下列方程中,属于一元二次方程的是_. (1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2; (4)2x2-2x(x+7)=0. 总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的
18、项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程. 例2教材第3页例题. 例3以-2为根的一元二次方程是() A.x2+2x-1=0 B.x2-x-2=0 C.x2+x+2=0 D.x2+x-2=0 总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等. 练习: 1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是_. 2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项. (1)4x2=81;(2)(3x-2)(x+1)=8x-3. 3.教材第4页练习第2题
19、. 4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为_. 答案:1.a1;2.略;3.略;4.k=4. 活动5课堂小结与作业布置 课堂小结 我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗? 作业布置 教材第4页习题21.1第17题.21.2解一元二次方程 21.2.1配方法(3课时) 第1课时直接开平方法 理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程
20、. 重点 运用开平方法解形如(x+m)2=n(n0)的方程,领会降次转化的数学思想. 难点 通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程. 一、复习引入 学生活动:请同学们完成下列各题. 问题1:填空 (1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2. 解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2. 问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
21、 二、探索新知 上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢? (学生分组讨论) 老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=3 即2t+1=3,2t+1=-3 方程的两根为t1=1,t2=-2 例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2 分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. (2)由已知,得:(x+3)2=2 直接开平方,得:x+3=2 即x+3=2,x+3=-2 所以,方程的两根x1=-3+2,x2=-3-2 解:略
22、. 例2市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率. 分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x, 则:10(1+x)2=14.4 (1+x)2=1.44 直接开平方,得1+x=1.2 即1+x=1.2,1+x=-1.2 所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.
23、(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”. 三、巩固练习 教材第6页练习. 四、课堂小结 本节课应掌握:由应用直接开平方法解形如x2=p(p0)的方程,那么x=p转化为应用直接开平方法解形如(mx+n)2=p(p0)的方程,那么mx+n=p,达到降次转化之目的.若p0则方程无解. 五、作业布置 教材第16页复习巩固1.第2课时配方法的基本形式 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x2=p(p0)或(mx+n)2=p(
24、p0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤. 沪教版七年级数学教案最新例文5 配方法的基本形式 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤. 重点 讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤. 难点 将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 一、复习引入 (学生活动)请同学们解下列方程: (1)3x2-1=5(2)4(x-1)2-9=0(
25、3)4x2+16x+16=9(4)4x2+16x=-7 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得 x=p或mx+n=p(p0). 如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗? 二、探索新知 列出下面问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面前三个方程的解法呢? 问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少? (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后
26、二个不具有此特征. (2)不能. 既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化: x2+6x-16=0移项x2+6x=16 两边加(6/2)2使左边配成x2+2bx+b2的形式x2+6x+32=16+9 左边写成平方形式(x+3)2=25降次x+3=5即x+3=5或x+3=-5 解一次方程x1=2,x2=-8 可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1用配方法解下列关于x的方程: (1)x2-8x+1=0(2)x2-2x-12=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:略. 三、巩固练习 教材第9页练习1,2.(1)(2). 四、课堂小结 本节课应掌握: 左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程. 五、作业布置