《万能公式推导(6页).doc》由会员分享,可在线阅读,更多相关《万能公式推导(6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-万能公式推导-第 6 页万能公式推导sin2=2sincos=2sincos/(cos2()+sin2().*,(因为cos2()+sin2()=1)再把*分式上下同除cos2(),可得sin2=2tan/(1+tan2()然后用/2代替即可。同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。三倍角公式推导tan3=sin3/cos3=(sin2cos+cos2sin)/(cos2cos-sin2sin)=(2sincos2()+cos2()sinsin3()/(cos3()cossin2()2sin2()cos)上下同除以cos3(),得:tan3=(3tantan3()/(1
2、-3tan2()sin3=sin(2+)=sin2cos+cos2sin=2sincos2()+(12sin2()sin=2sin2sin3()+sin2sin3()=3sin4sin3()cos3=cos(2+)=cos2cossin2sin=2cos2()1cos2cossin2()=2cos3()cos+2cos2cos3()=4cos3()3cos即sin3=3sin4sin3()cos3=4cos3()3cos和差化积公式推导首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+
3、b)+sin(a-b)=2sina*cosb所以,sina*cosb=sin(a+b)+sin(a-b)/2同理,若把两式相减,就得到cosa*sinb=sin(a+b)-sin(a-b)/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=cos(a+b)+cos(a-b)/2同理,两式相减我们就得到sina*sinb=-cos(a+b)-cos(a-b)/2这样,我们就得到了积化和差的四
4、个公式:sina*cosb=sin(a+b)+sin(a-b)/2cosa*sinb=sin(a+b)-sin(a-b)/2cosa*cosb=cos(a+b)+cos(a-b)/2sina*sinb=-cos(a+b)-cos(a-b)/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin(x+y)/2*cos(x-y)/2sinx-siny=2cos(x+y)/2*sin(x-y)/2cos
5、x+cosy=2cos(x+y)/2*cos(x-y)/2cosx-cosy=-2sin(x+y)/2*sin(x-y)/2同角三角函数的基本关系式倒数关系tan cot=1sin csc=1cos sec=1商的关系sin/cos=tan=sec/csccos/sin=cot=csc/sec平方关系sin2()+cos2()=11+tan2()=sec2()1+cot2()=csc2()同角三角函数关系六角形记忆法构造以“上弦、中切、下割;左正、右余、中间1“的正六边形为模型。倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两
6、条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。两角和差公式sin(+)=sincos+cossinsin()=sincos-cossincos(+)=coscos-sinsincos()=coscos+sinsintan(+)=(tan+tan )/(1tan tan)tan()=(tantan)/(1+tan tan)二倍角的正弦、余弦和正切公式sin2=2sincoscos2=cos2()sin2()=2cos2()1=12sin2()tan2=2tan/(
7、1tan2()tan(1/2*)=(sin )/(1+cos )=(1-cos )/sin 半角的正弦、余弦和正切公式sin2(/2)=(1cos)/2cos2(/2)=(1+cos)/2tan2(/2)=(1cos)/(1+cos)tan(/2)=(1cos)/sin=sin/1+cos万能公式sin=2tan(/2)/(1+tan2(/2)cos=(1tan2(/2)/(1+tan2(/2)tan=(2tan(/2)/(1tan2(/2)三倍角的正弦、余弦和正切公式sin3=3sin4sin3()cos3=4cos3()3costan3=(3tantan3()/(13tan2()三角函数的和差化积公式sin+sin=2sin(+)/2) cos()/2)sinsin=2cos(+)/2) sin()/2)cos+cos=2cos(+)/2)cos()/2)coscos=2sin(+)/2)sin()/2)三角函数的积化和差公式sincos=0.5sin(+)+sin()cossin=0.5sin(+)sin()coscos=0.5cos(+)+cos()sinsin= 0.5cos(+)cos()