《七年级数学上册期末总复习及其测试题(92页).doc》由会员分享,可在线阅读,更多相关《七年级数学上册期末总复习及其测试题(92页).doc(91页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-七年级数学上册期末总复习及其测试题-第 91 页七年级数学上册期末总复习第一章:有理数及其运算复习(共2课时)知识要求:1、有具体情境中,理解有理数及其运算的意义;2、能用数轴上的点表示有理数,会比较有理数的大小.3、借助数轴理解相反数与绝对值的意义,会求有理数的相反数与绝对值.4、经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能利用运算律简化运算,及能运用有理数及其运算律解决简单的实际问题.知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点.知识难点:绝对值的概念及有关计算,有理数的大小比
2、较,及有理数的运算是本章的难点.考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象.教学过程设计:教 学 过 程修 改 与 备 注一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数.2、有理数的分类:(1)按定义分类: (2)按性质符号分类: 3、数轴数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大
3、,所以正数都大于0,负数都小于0,正数大于负数.4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:(3)两个负数比较大小,绝对值大的反而小.二、有理数的运算1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝
4、对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.(2)有理数加法的运算律:加法的交换律 :a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数.(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.(3)有理数加减混合运算步骤:先把减法变成加法,再按
5、有理数加法法则进行运算;3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac.(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.5、有理数
6、的乘法(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.(2)进行有理数
7、的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.练习:一、选择题:1、下列说法正确的是( )A、非负有理数即是正有理数 B、0表示不存在,无实际意义C、正整数和负整数统称为整数 D、整数和分数统称为有理数2、下列说法正确的是( )A、互为相反数的两个数一定不相等 B、互为倒数的两个数一定不相等C、互为相反数的两个数的绝对值相等 D、互为倒数的两个数的绝对值相等3、绝对值最小的数是( )A、1 B、0 C、 1 D、不存在4、计算所得的结果是( )A、0 B、32 C、 D、165、有理数中倒数等
8、于它本身的数一定是( )A、1 B、0 C、-1 D、16、( 3)( 4)+7的计算结果是( )A、0 B、8 C、 14 D、 87、( 2)的相反数的倒数是( )A、 B、 C、2 D、 28、化简:,则是( )A、2 B、 2 C、2或 2 D、以上都不对9、若,则=( )A、 1 B、1 C、0 D、310、有理数a,b如图所示位置,则正确的是( )A、a+b0 B、ab0 C、b-a|b|二、填空题11、( 5)+( 6)=_;( 5)( 6)=_.12、( 5)( 6)=_;( 5)6=_.13、_;=_.14、_;_.15、_;16、平方等于64的数是_;_的立方等于 6417
9、、与它的倒数的积为_.18、若a、b互为相反数,c、d互为倒数,m的绝对值是2,则a+b=_;cd=_;m=_.19、如果a的相反数是 5,则a=_,|a|=_,| a 3|=_.20、若|a|=4,|b|=6,且ab0,即;当时,; 当时,.点拨:本题分析比大小和做差比较大小时都发现要进行分类讨论,注意分类要既不重复也不遗漏. 四、中考题型分析题型一:去括号、合并同类项的题例1、(2006年长春市) 化简的结果是( )(A)0 (B)2 (C) (D)分析:本题是去括号、合并同类项的基础题,只要按去括号法则运算即可.解:.,所以选C题型二:求值题例2、(苏州市2006年) 若x=2,则的值是
10、 ( )(A) (B)1 (C)4 (D)8分析:本题也是求值题中的基本题,直接代入求值即可.解:;所以选B.例3、(张家界市2006年)已知,那么:_分析:本题根据已知条件很难求得x和y的值,所以考虑用整体代入法求值.解:因为,所以点拨:求代数式值的题型,一般的解题思路是先化简再代入计算求值.但代数式中字母值很难求时考虑用整体代入法.一般整体代入法求值的题目有一定的特征,就是含未知数的部分可以看成一个整体.题型三:列代数式题例4(湖北省荆门市二00六年a的正方形中挖去一个边长为b的小正方形(ab),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子
11、成立的是( )(A)a2-b2=(a+b)(a-b).(B)(a+b)2=a2+2ab+b2.(C)(a-b)2=a2-2ab+b2. (D)a2-b2=(a-b)2.分析:图(1)阴影部分的面积是a2-b2,图(2)阴影部分的面积是:,由于阴影部分面积相等,所以选A.解:选A.题型五 找规律题型例5、(常德市,2005)找规律:如图,第(1)幅图中有1个菱形,第(2)幅图中有3个菱形,第(3)幅图中有5个菱形,则第(n)幅图中共有_个菱形. 分析:第(1)幅图中有1个菱形,第(2)幅图中有3个菱形,第(3)幅图中有5个菱形,第(4)幅图中有7个菱形,所以第(n)幅图中有(2n1)个菱形.解:
12、有(2n1)个第二章单元测试题一、选择题(本大题共12题,每小题2分,共24分,每小题只有一个正确选项,把正确选项的代号填在题后的括号里)1、在下列代数式:中,单项式有( )(A)3个 (B)4个 (C)5个 (D)6个 2、.在下列代数式:中,多项式有( )(A)2个 (B)3个 (C)4个 (D)5个为八次四项式,则正整数m的值为( )A. 2B. 3C. 4D. 54、 下列说法中正确的是( )A. 5不是单项式 5. A. x与y的一半的差 B. x与y的差的一半 C. x减去y除以2的差 7. 下列各组中,当n3时是同类项的是( ) 8、下列整式加减正确的是【 】(A)2x(x22x
13、)=x2 (B)2x(x22x)=x2 (C)2x(y2x)=y (D)2x(x22x)=x29、减去2x后,等于4x23x5的代数式是【 】(A)4x25x5 (B)4x25x5 (C)4x2x5 (D)4x2510.、一个多项式加上3x2y3xy2得x33x2y,这个多项式是【 】(A)x33xy2 (B)x33xy2 (C)x36x2y3xy2 (D)x36x2y3xy211、 把,正确的是( )A. B. C. D. 12、(安徽省,2005)今天,和你一起参加全省课改实验区初中毕业学业考试的同学约有15万人,其中男生约有a万人,则女生约有( ) A、(15+a)万人 B、(15a)万
14、人 C、15a万人 D、万人二、填空题(本题共8小题,每小题3分,共24分)13. 一个三位数,它的个位数字是0,十位数字是a,百位数字是b,用代数式表示这个三位数是_.14.若单项式2x3yn3是一个关于x,y的5次单项式,则n=_.15.若多项式(m+2)y23xy3是五次二项式,则m=_.16.化简2x(5a7x2a)=_.17、. 当时,代数式的值是_.18、 已知,则代数式_. 19、 已知,则代数式_.20、 已知长方形的长为a,面积是16,它的宽为_.三、解答题:(21、22、23、25、26、27每题8分,24题6分)21、. 补入下列各多项式的缺项,并按x的升幂排列: (1)
15、x3x2 (2)x45x2 (3)x31 (4)1x4 22、比较下列各式的大小:(1)比较和的大小.(2) 比较与的大小23、 24、已知长方形ABCD中,AB=4cm,AD=2cm,以AB为直径作一个半圆,求阴影部分面积. 2526、某移动通讯公司开设了两种通讯业务:“全球通”用户先交50元月租费,然后每通话一分钟,付话费元(市内通话);“快捷通”,用户不交月租费,每通话一分钟,付话费元(市内通话). (1)按一个月通话x分钟计,请你写出两种收费方式下客户应支付的费用;(2)某用户一个月内市内通话时间为200分钟,选择哪种通讯业务较省钱?教学反思:第三章:一元一次方程复习(共3课时)知识要
16、求:1、能根据具体问题的数量关系,列出方程、建立模型、解方程和运用方程来解决实际问题.2、了解一元一次方程及其有关概念,会解一元一次方程(数字系数).3、能一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.知识重点:掌握等式的基本性质、方程的概念、会解一元一次方程及应用一元一次方程来解应用题.知识难点:灵活运用求解一元一次方程的步骤,应用一元一次方程来解应用题.考点:解方程和运用方程解应用题是考试的重点内容.教学过程设计:教 学 过 程修 改 与 备 注一、方程的有关概念1、方程的概念:(1)含有未知数的等式叫方程.(2)
17、在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.2、等式的基本性质:(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或a c = b c .(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或(3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a.(4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换.二、解方程1、移项的有关概念:把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方
18、程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.2、解一元一次方程的步骤:(1)去分母 等式的性质2注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.(2)去括号 去括号法则、乘法分配律严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.(3)移项 等式的性质1 越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把
19、移动过来的项改变符号写在后面(4)合并同类项 合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变.(5)系数化为1 等式的性质2两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒.(6)检验二、列方程解应用题1、列方程解应用题的一般步骤:(1)将实际问题抽象成数学问题;(2)分析问题中的已知量和未知量,找出等量关系;(3)设未知数,列出方程;(4)解方程;(5)检验并作答.2、一些实际问题中的规律和等量关系:(1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范
20、围.(2)几种常用的面积公式:长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S = a2,a为边长,S为面积;梯形面积公式:S = ,a,b为上下底边长,h为梯形的高,S为梯形面积;圆形的面积公式:,r为圆的半径,S为圆的面积;三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积.(3)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.正方形的周长:L=4a,a为正方形的边长,L为周长.圆:L=2r,r为半径,L为周长.(4)柱体的体积等于底面积乘以高,当休积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为
21、:变形前的体积=变形后的体积.(5)打折销售这类题型的等量关系是:利润=售价成本.(6)行程问题中关建的等量关系:路程=速度时间,以及由此导出的其化关系.(7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系.(8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程.(9)关于储蓄中的一些概念:本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金利率期数;本息=本金+利息.练习题
22、:一、填空题:1、请写出一个一元一次方程:_.2、如果单项式与是同类项,则m=_.3、如果2是方程的解,求a=_.4、代数式的值是互为相反数,求x=_.5、如果|m|=4,那么方程的解是_.6、在梯形面积公式S = 中,已知S=10,b=2,h=4求a=_.7、方程是一元一次方程,则_.日一二三四五六123456789101112131415161718192021222324252627282930318、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数,这四个数字的和为55,设a为x,则可列出方程:二、选择题:1、三个连续的自然数的和是15,则它们的积是( )A、125
23、 B、210 C、64 D、1202、下列方程中,是一元一次方程的是( )(A) (B) (C) (D)3、方程的解是( )(A) (B) (C) (D) 4、已知等式,则下列等式中不一定成立的是( )(A) (B) (C) (D) 5、解方程,去分母,得( )(A) (B) (C) (D)6、下列方程变形中,正确的是( )(A)方程,移项,得 (B)方程,去括号,得 (C)方程,未知数系数化为1,得(D)方程化成7、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为,则列出的方程正确的是( )(A) (B) (C) (D) 8、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知