《动物生物化学期末复习重点(14页).doc》由会员分享,可在线阅读,更多相关《动物生物化学期末复习重点(14页).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-生物化学复习要点第1章 绪论 一、生物化学的的概念:生物化学(biochemistry):研究生命现象的化学本质的科学。第3章 蛋白质 一、氨基酸: 1. 结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-氨基酸。 2. 分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类: 非极性中性氨基酸(8种); 极性中性氨基酸(7种); 酸性氨基酸(Glu和Asp); 碱性氨基酸(Lys、Arg和His)。 二、 肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的-
2、羧基与另一分子氨基酸的-氨基经脱水而形成的共价键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端C端。 三、蛋白质的分子结构: 蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。 1一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。 2二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型:-螺旋、-折叠、-转角、r转角、无规卷曲。 -螺旋结构特征为:主链骨架围
3、绕中心轴盘绕形成右手螺旋;螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm; 相邻螺旋圈之间形成许多氢键。3. 超二级结构:指相互邻近的二级结构在空间折叠中靠近,彼此相互作用,形成规则的二级结构聚合体。4. 在较大的蛋白质分子或亚基中,其三维结构往往可以形成两个或多个空间上可以明显区别的区域。5三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫键。 6四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。 四、蛋白质的理化性质: 1两性解离与等
4、电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点(pI)。 2蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。 4蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。第4章 核酸 一、核酸的化学组成: 1.含氮碱: 参与
5、核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。组成核苷酸的嘧啶碱主要有三种尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。组成核苷酸的嘌呤碱主要有两种腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。 2. 戊糖:核苷酸中的戊糖主要有两种,即-D-核糖与-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。 3. 核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。由“稀有碱基”所生成的核苷称为“稀有核苷”。如:假尿苷()二、核苷酸的结构与命名: 核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。核苷酸又可
6、按其在5位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。 此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。 核苷酸通常使用缩写符号进行命名。第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。 三、核酸的一级结构: 核苷酸通过3,5-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。核酸具有方向性,5-位上具有自由磷酸基的末端称为5-端,3-位上具有自由羟基的末端称为3-端。 DNA由dAMP、dGMP、
7、dCMP和dTMP四种脱氧核糖核苷酸所组成。DNA的一级结构就是指其多核苷酸链中各个核苷酸之间的连接方式、核苷酸的种类数量以及核苷酸的排列顺序。RNA由AMP,GMP,CMP,UMP四种核糖核苷酸组成。四、DNA的二级结构: DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick两位科学家于1953年提出来的一种结构模型,其主要实验依据是Chargaff研究小组对DNA的化学组成进行的分析研究,即DNA分子中四种碱基的摩尔百分比为A=T、G=C、A+G=T+C(Chargaff原则),以及由Wilkins研究小组完成的DNA晶体X线衍射图谱分析。 天然DNA的二级结构以B
8、型为主,其结构特征为:为右手双螺旋,两条链以反平行方式排列;主链位于螺旋外侧,碱基位于内侧;两条链间存在碱基互补,通过氢键连系,且A-T、G-C(碱基互补原则); 螺旋的稳定因素为氢键和碱基堆砌力;螺旋的螺距为3.4nm,10碱基为一个螺旋。 五、DNA的超螺旋结构: 双螺旋的DNA分子进一步盘旋形成的超螺旋结构称为DNA的三级结构。 绝大多数原核生物的DNA都是共价封闭的环状双螺旋,其三级结构呈麻花状。 六、RNA的空间结构与功能: RNA分子的种类较多,分子大小变化较大,功能多样化。RNA通常以单链存在,但也可形成局部的双螺旋结构。 1. mRNA的结构与功能:mRNA是单链核酸,其在真核
9、生物中的初级产物称为HnRNA。大多数真核成熟的mRNA分子具有典型的5-端的7-甲基鸟苷三磷酸(m7G)帽子结构和3-端的多聚腺苷酸(polyA)尾巴结构。mRNA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。原核生物的mRNA一般是多顺反子。真核生物的mRNA一般是单顺反子。2. tRNA的结构与功能:tRNA是分子最小,但含有稀有碱基最多的RNA。tRNA的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为:氨基酸臂:3-端都带有-CCA-顺序,可与氨基酸结合而携带氨基酸。DHU臂/环:含有二氢尿嘧啶核苷。反密码臂/环:其反密码环中部的三个核苷酸组成三联
10、体,在蛋白质生物合成中,可以用来识别mRNA上相应的密码,故称为反密码(anticoden)。 TC臂/环:含保守的TC顺序。可变环。 3. rRNA的结构与功能:rRNA是细胞中含量最多的RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合成的场所。原核生物中的rRNA有三种:5S,16S,23S。真核生物中的rRNA有四种:5S,5.8S,18S,28S。 七、核酶: 具有自身催化作用的RNA称为核酶(ribozyme)。 八、核酸的一般理化性质: 核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰为260nm。 九、DNA的变性: 是指核酸分子中氢键断裂,双螺旋解开,变成无规则卷曲的过程,这
11、种现象称为DNA的变性。 引起DNA变性的因素主要有:高温,强酸强碱,有机溶剂等。增色效应:指DNA变性后对260nm紫外光的光吸收度增加的现象。 加热DNA溶液,使其对260nm紫外光的吸收度突然增加。50%的DNA分子发生变性时的温度称熔解温度(Tm)。Tm的高低与DNA分子中G+C的含量有关,G+C的含量越高,则Tm越高。 十、DNA的复性与分子杂交: 将变性DNA经退火处理,使其重新形成双螺旋结构的过程,称为DNA的复性。 把不同的DNA链放在同一溶液中做变性处理,或把单链DNA和RNA放在一起,只要有些区域有碱基配对的可能,它们之间就可能形成局部的双链,这一现象称为核酸的分子杂交。核
12、酸杂交可以是DNA-DNA,也可以是DNA-RNA杂交。第7章 酶 一、酶的概念: 酶(enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体)三大类。 二、酶的分子组成: 酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅因子两部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关。 与酶蛋白疏松结合的低分子有机化合物称为辅酶。与酶蛋白牢固结合的低分子有机化合物称为辅基。 三、辅酶与辅基的来源及其生理功用: 大部分的辅酶与辅
13、基衍生于维生素。维生素(vitamin)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。 维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VitD、VitE和VitK四种;水溶性维生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,叶酸等。 1.TPP:即焦磷酸硫胺素,由硫胺素(Vit B1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中-酮酸的氧化脱羧反应。 2.FMN和FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的
14、衍生物。FMN或FAD通常作为脱氢酶的辅基,在酶促反应中作为递氢体。 3.NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶),是Vit PP的衍生物。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用。 4.磷酸吡哆醛和磷酸吡哆胺:是Vit B6的衍生物。磷酸吡哆醛和磷酸吡哆胺可作为氨基转移酶,氨基酸脱羧酶等的辅酶。 5.CoA:泛酸(遍多酸)在体内参与构成辅酶A(CoA)。CoA中的巯基可与羧基以高能硫酯键结合,在糖、脂、蛋白质代谢中起传递酰基的作用,是酰化酶的辅酶。 6.生物素:是羧化酶的辅基,在体内参与CO2
15、的固定和羧化反应。 7. FH4:由叶酸衍生而来。四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。 四、酶的活性中心: 酶分子中能直接与底物分子结合,并催化底物化学反应的部位,这一部位就称为酶的活性中心。 参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产物的,称为催化基团,这两类基团统称为活性中心内必需基团。在酶的活性中心以外,也存在一些化学基团,主要与维系酶的空间构象有关,称为酶活性中心外必需基团。 五、酶促反应的特点: 1具有极高的催化效率 2具有高度的底物专一性:绝对特异性、相对特异性、立体异构特异性3酶的催化活性是可以调节的4. 酶的不稳定性
16、六、酶促反应的机制: 中间复合物学说与诱导契合学说:酶催化时,酶活性中心首先与底物结合生成一种酶-底物复合物(ES),此复合物再分解释放出酶,并生成产物,即为中间复合物学说。当底物与酶接近时,底物分子可以诱导酶活性中心的构象以生改变,使之成为能与底物分子密切结合的构象,这就是诱导契合学说。 七、酶促反应动力学: 酶反应动力学主要研究酶催化的反应速度以及影响反应速度的各种因素。在探讨各种因素对酶促反应速度的影响时,通常测定其初始速度来代表酶促反应速度,即底物转化量5%时的反应速度。 1底物浓度对反应速度的影响: 底物对酶促反应的饱和现象:一级反应混级反应零级反应 米氏方程及米氏常数:根据上述实验
17、结果,Michaelis & Menten 于1913年推导出了上述矩形双曲线的数学表达式,即米氏方程: = VmaxS/(Km+S)。其中,Vmax为最大反应速度,Km为米氏常数。 Km和Vmax的意义: 当=Vmax/2时,Km=S。因此,Km等于酶促反应速度达最大值一半时的底物浓度。 Km可以反映酶与底物亲和力的大小,即Km值越小,则酶与底物的亲和力越大;反之,则越小。 Km是酶的特征性常数,在一定条件下,某种酶的Km值是恒定的。当酶有几种不同的底物存在时,Km值最小者,为该酶的最适底物。 Km可用来确定酶活性测定时所需的底物浓度:当S=10Km时,=91%Vmax,为最合适的测定酶活性
18、所需的底物浓度。 Km和Vmax的测定:主要采用Lineweaver-Burk双倒数作图法。 2酶浓度对反应速度的影响:当反应系统中底物的浓度足够大时,酶促反应速度与酶浓度成正比,即=kE。 3温度对反应速度的影响:一般来说,酶促反应速度随温度的增高而加快,但当温度增加达到某一点后,由于酶蛋白的热变性作用,反应速度迅速下降。酶促反应速度随温度升高而达到一最大值时的温度就称为酶的最适温度。酶的最适温度与实验条件有关,因而它不是酶的特征性常数。 4pH对反应速度的影响:观察pH对酶促反应速度的影响,通常为一钟形曲线,即pH过高或过低均可导致酶催化活性的下降。酶催化活性最高时溶液的pH值就称为酶的最
19、适pH。酶的最适pH不是酶的特征性常数。 5抑制剂对反应速度的影响: 凡是能降低酶促反应速度,但不引起酶分子变性失活的物质统称为酶的抑制剂。按照抑制剂的抑制作用,可将其分为不可逆抑制作用和可逆抑制作用两大类。 不可逆抑制作用: 抑制剂与酶分子的必需基团共价结合引起酶活性的抑制,且不能采用透析等简单方法使酶活性恢复的抑制作用就是不可逆抑制作用。酶的不可逆抑制作用包括专一性抑制(如有机磷农药对胆碱酯酶的抑制)和非专一性抑制(如路易斯气对巯基酶的抑制)两种。可逆抑制作用: 抑制剂以非共价键与酶分子可逆性结合造成酶活性的抑制,且可采用透析等简单方法去除抑制剂而使酶活性完全恢复的抑制作用就是可逆抑制作用
20、。可逆抑制作用包括竞争性、反竞争性和非竞争性抑制几种类型。 竞争性抑制:抑制剂与底物竞争与酶的同一活性中心结合,从而干扰了酶与底物的结合,使酶的催化活性降低,这种作用就称为竞争性抑制作用。其特点为:a.竞争性抑制剂往往是酶的底物类似物或反应产物;b.抑制剂与酶的结合部位与底物与酶的结合部位相同;c.抑制剂浓度越大,则抑制作用越大;但增加底物浓度可使抑制程度减小;d.动力学参数:Km值增大,Vm值不变。例子是磺胺类药物(对氨基苯磺酰胺)对二氢叶酸合成酶(底物为对氨基苯甲酸)的竞争性抑制。 非竞争性抑制:抑制剂既可以与游离酶结合,也可以与ES复合物结合,使酶的催化活性降低,称为非竞争性抑制。其特点
21、为:a.底物和抑制剂分别独立地与酶的不同部位相结合;b.抑制剂对酶与底物的结合无影响,故底物浓度的改变对抑制程度无影响;c.动力学参数:Km值不变,Vm值降低。 6激活剂对反应速度的影响:能够促使酶促反应速度加快的物质称为酶的激活剂。酶的激活剂大多数是金属离子,如K+、Mg2+、Mn2+等,唾液淀粉酶的激活剂为Cl-。 八、酶的调节: 变构调节:又称别构调节。某些代谢物能与变构酶分子上的变构部位特异性结合,使酶的分子构发生改变,从而改变酶的催化活性以及代谢反应的速度,这种调节作用就称为变构调节。具有变构调节作用的酶就称为变构酶。凡能使酶分子变构并使酶的催化活性发生改变的代谢物就称为变构剂。 同
22、工酶的调节:存在于同一种属生物或同一个体中能催化相同的化学反应,但在蛋白质分子的结构、理化性质和生物学性质方面都存在明显差异的一组酶称同工酶。同工酶在体内的生理意义主要在于适应不同组织或不同细胞器在代谢上的不同需要。因此,同工酶在体内的生理功能是不同的。 乳酸脱氢酶同工酶(LDH)为四聚体,在体内共有五种分子形式,即LDH1(H4),LDH2(H3M1),LDH3(H2M2),LDH4(H1M3)和LDH5(M4)。 酶原的激活:处于无活性状态的酶的前身物质就称为酶原。酶原在一定条件下转化为有活性的酶的过程称为酶原的激活。九、酶的命名与分类: 1酶的命名:主要有习惯命名法与系统命名法两种,但常
23、用者为习惯命名法。 2酶的分类:根据1961年国际酶学委员会(IEC)的分类法,将酶分为六大类: 氧化还原酶类:催化氧化还原反应;转移酶类:催化一个基团从某种化合物至另一种化合物;水解酶类:催化化合物的水解反应;裂合酶类:催化从双键上去掉一个基团或加上一个基团至双键上;异构酶类:催化分子内基团重排;合成酶类:催化两分子化合物的缔合反应。第8章 糖代谢 一、糖类的生理功用: 氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。 作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白作为核酸类化合物的成分:
24、核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。二、糖的无氧酵解: 糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。 糖的无氧酵解代谢过程可分为四个阶段: 1. 活化: 葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖6-磷酸葡萄糖6-磷酸果糖1,6-双磷酸果糖(F-1,6-BP)。这一阶段需消耗两分子ATP,己糖激酶和6-磷酸果糖激酶-1是关键酶。 2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP磷酸二羟
25、丙酮 + 3-磷酸甘油醛 和 磷酸二羟丙酮3-磷酸甘油醛。 3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛1,3-二磷酸甘油酸3-磷酸甘油酸2-磷酸甘油酸磷酸烯醇式丙酮酸丙酮酸。此阶段有两次底物水平磷酸化的放能反应,共可生成22=4分子ATP。丙酮酸激酶为关键酶。 4还原(乳酸/酒精发酵):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。即丙酮酸乳酸/乙醇。 三、糖无氧酵解的调节: 主要是对三个关键酶,即己糖激酶、磷酸果糖激酶、丙酮酸激酶进行调节。四、糖酵解的生理意义: 1. 获得适应缺氧环境所需能量
26、。1分子葡萄糖经糖酵解可净产生2分子ATP2. 是机体某些组织的主要获能方式。如视网膜等。3. 形成的中间产物为其它代谢提供原料。 6-磷酸葡萄糖等。五、糖的有氧氧化: 葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O,并释放出大量能量的过程称为糖的有氧氧化。绝大多数组织细胞通过糖的有氧氧化途径获得能量。此代谢过程在细胞线粒体内进行,一分子葡萄糖彻底氧化分解可产生30/32分子ATP。糖的有氧氧化代谢途径可分为二个阶段: 1. 丙酮酸氧化脱羧生成乙酰CoA: 丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下氧化脱羧生成(NADH+H+)和乙酰CoA。丙酮酸脱氢酶系为关键酶,该酶由三种酶单体构成,涉及
27、六种辅助因子,即NAD+、FAD、CoA、TPP、硫辛酸和Mg2+。 2. 经三羧酸循环彻底氧化分解: 生成的乙酰CoA可进入三羧酸循环彻底氧化分解为CO2和H2O,并释放能量合成ATP。一分子乙酰CoA氧化分解后共可生成10分子ATP。三羧酸循环由八步反应构成:草酰乙酸 + 乙酰CoA柠檬酸异柠檬酸-酮戊二酸琥珀酰CoA琥珀酸延胡索酸苹果酸草酰乙酸。 三羧酸循环的特点: 循环反应在线粒体中进行,为不可逆反应。每完成一次循环,氧化分解掉一分子乙酰基,可生成10分子ATP。 循环中有两次脱羧反应,生成两分子CO2;循环中有四次脱氢反应,生成三分子NADH和一分子FADH2;循环中有一次直接产能反
28、应,生成一分子GTP。 三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和-酮戊二酸脱氢酶系,且-酮戊二酸脱氢酶系的结构与丙酮酸脱氢酶系相似,辅助因子完全相同。六、糖有氧氧化的生理意义: 1是糖在体内分解供能的主要途径2是糖、脂、蛋白质氧化供能的共同途径:糖、脂、蛋白质的分解产物主要经此途径彻底氧化分解供能。 3是糖、脂、蛋白质相互转变的枢纽。七、有氧氧化的调节: 丙酮酸脱氢酶系受乙酰CoA、ATP和NADH的变构抑制,受AMP、ADP和NAD+的变构激活。异柠檬酸脱氢酶是调节三羧酸循环流量的主要因素,ATP是其变构抑制剂,AMP和ADP是其变构激活剂。 八、磷酸戊糖途径: 磷酸戊糖途径是指从G
29、-6-P脱氢反应开始,经一系列代谢反应生成磷酸戊糖等中间代谢物,然后再重新进入糖氧化分解代谢途径的一条旁路代谢途径。该旁路途径的起始物是G-6-P,返回的代谢产物是3-磷酸甘油醛和6-磷酸果糖,其重要的中间代谢产物是5-磷酸核糖和NADPH。整个代谢途径在胞液中进行。关键酶是6-磷酸葡萄糖脱氢酶。 九、磷酸戊糖途径的生理意义: 1. 是体内生成还原力(NADPH)的主要代谢途径2. 是体内生成5-磷酸核糖的唯一代谢途径十、糖原的合成与分解: 糖原是由许多葡萄糖分子聚合而成的带有分支的高分子多糖类化合物。糖原分子的直链部分借-1,4-糖苷键而将葡萄糖残基连接起来,其支链部分则是借-1,6-糖苷键
30、而形成分支。糖原是一种无还原性的多糖。糖原的合成与分解代谢主要发生在肝、肾和肌肉组织细胞的胞液中。 1糖原的合成代谢:糖原合成的反应过程可分为三个阶段。 活化:由葡萄糖生成尿苷二磷酸葡萄糖:葡萄糖6-磷酸葡萄糖1-磷酸葡萄糖UDPG。此阶段需使用UTP,并消耗相当于两分子的ATP。 缩合:在糖原合酶催化下,UDPG所带的葡萄糖残基通过-1,4-糖苷键与原有糖原分子的非还原端相连,使糖链延长。糖原合酶是糖原合成的关键酶。 分支:在分支酶的催化下,将距末端67个葡萄糖残基组成的寡糖链由-1,4-糖苷键转变为-1,6-糖苷键,使糖原出现分支,同时非还原端增加。 2糖原的分解代谢:糖原的分解代谢可分为
31、三个阶段,是一非耗能过程。 水解:糖原1-磷酸葡萄糖。此阶段的关键酶是糖原磷酸化酶,并需脱支酶协助。 异构:1-磷酸葡萄糖6-磷酸葡萄糖。 脱磷酸:6-磷酸葡萄糖葡萄糖。此过程只能在肝和肾进行。十一、糖异生: 由非糖物质转变为葡萄糖或糖原的过程称为糖异生。该代谢途径主要存在于肝及肾中。糖异生主要沿酵解途径逆行,但由于有三步反应(己糖激酶、磷酸果糖激酶、丙酮酸激酶)为不可逆反应,故需经另外的反应绕行。 1G-6-P G:由葡萄糖-6-磷酸酶催化进行水解,该酶是糖异生的关键酶之一。 2F-1,6-BP F-6-P:由果糖1,6-二磷酸酶催化进行水解,该酶也是糖异生的关键酶之一。 3丙酮酸 磷酸烯醇
32、式丙酮酸:经由丙酮酸羧化支路完成,在丙酮酸羧化酶(需生物素)的催化下生成草酰乙酸,再在磷酸烯醇式丙酮酸羧激酶的催化下转变为磷酸烯醇式丙酮酸,这两个酶都是关键酶。 十二、糖异生的生理意义: 1在饥饿情况下维持血糖浓度的相对恒定:在较长时间饥饿的情况下,机体需要靠糖异生作用生成葡萄糖以维持血糖浓度的相对恒定。 2回收乳酸分子中的能量:由于乳酸主要是在肌肉组织经糖的无氧酵解产生,但肌肉组织糖异生作用很弱,且不能生成自由葡萄糖,故需将产生的乳酸转运至肝脏重新生成葡萄糖后再加以利用。 葡萄糖在肌肉组织中经糖的无氧酵解产生的乳酸,可经血循环转运至肝脏,再经糖的异生作用生成自由葡萄糖后转运至肌肉组织加以利用
33、,这一循环过程就称为乳酸循环(Cori循环)。 十三、血糖: 血液中的葡萄糖含量称为血糖。正常空腹血糖浓度为3.896.11mmol/L(70100mg%)。 1血糖的来源与去路:正常情况下,血糖浓度的相对恒定是由其来源与去路两方面的动态平衡所决定的。血糖的主要来源有: 消化吸收的葡萄糖; 肝脏的糖异生作用; 肝糖原的分解。血糖的主要去路有: 氧化分解供能; 合成糖原(肝、肌、肾); 转变为脂肪或氨基酸; 转变为其他糖类物质。 降低血糖浓度的激素胰岛素。升高血糖浓度的激素胰高血糖素、肾上腺素、生长激素、甲状腺激素。 第9章 生物氧化一、生物氧化的概念和特点: 生物氧化(biological o
34、xidation)是指细胞内的糖、蛋白质和脂肪进行氧化分解而生成CO2和H2O,并释放能量的过程。生物氧化在细胞内进行的;在常温、常压、近于中性及有水环境中进行的;反应逐步释放出能量,相当一部分能量以高能磷酸酯键的形式储存起来。 二、线粒体氧化呼吸链: 生物氧化过程中,从代谢物上脱下的氢由一系列传递体依次传递,最后与氧形成水的整个体系称为呼吸链。这些递氢体或递电子体往往以复合体的形式存在于线粒体内膜上。主要的复合体有: 1 复合体(NADH-泛醌还原酶):其作用是将(NADH+H+)传递给CoQ。 2 复合体(琥珀酸-泛醌还原酶):其作用是将FADH2传递给CoQ。 3 复合体(泛醌-细胞色素
35、c还原酶):其作用是将电子由泛醌传递给Cytc。 4 复合体(细胞色素c氧化酶):其作用是将电子由Cytc传递给氧。 三、呼吸链成分的排列顺序: 由上述递氢体或递电子体组成了NADH氧化呼吸链和琥珀酸氧化呼吸链两条呼吸链。 1NADH氧化呼吸链:其递氢体或递电子体的排列顺序为:NADH FMNCoQb c1 c aa3 1/2O2 。丙酮酸、-酮戊二酸、异柠檬酸、苹果酸、-羟丁酸、-羟脂酰CoA脱氢后经此呼吸链递氢。 2琥珀酸氧化呼吸链:其递氢体或递电子体的排列顺序为: FADCoQb c1 c aa3 1/2O2 。琥珀酸和脂酰CoA脱氢后经此呼吸链递氢。 四、生物体内能量生成的方式: 1氧
36、化磷酸化:在线粒体中,底物分子脱下的氢原子经递氢体系传递给氧,在此过程中释放能量使ADP磷酸化生成ATP,这种能量的生成方式就称为氧化磷酸化。 2底物水平磷酸化:直接将底物分子中的高能键转变为ATP分子中的末端高能磷酸键的过程称为底物水平磷酸化。 五、P/O比: 是指底物氧化时,每消耗1个氧原子所消耗的用于ADP磷酸化的无机磷的原子数。当底物脱氢以NAD+为受氢体时,P/O比值约为2.5;而当底物脱氢以FAD为受氢体时,P/O比值约为1.5。六、氧化磷酸化的偶联机制: 目前公认的机制是1961年由Mitchell提出的化学渗透学说。这一学说认为氧化呼吸链存在于线粒体内膜上,当氧化反应进行时,H
37、+通过氢泵作用(氧化还原袢)被排斥到线粒体内膜外侧(膜间腔),从而形成跨膜pH梯度和跨膜电位差。这种形式的能量,可以被存在于线粒体内膜上的ATP合酶利用,生成高能磷酸基团,并与ADP结合而合成ATP。 ATP合酶分为F0和F1两部分。七、呼吸链的抑制剂与解偶联剂:鱼藤酮抑制NADHCoQ;抗霉素A抑制b c1; CO、H2S和CN- 等抑制aa3 O2。解偶联剂(uncoupler)作用是使电子传递和ATP生成的两个过程分离。它只抑制ATP的形成,而不抑制电子传递过程。如:2,4二硝基苯酚(DNP) 八、线粒体外NADH的穿梭: 胞液中的3-磷酸甘油醛脱氢均可产生NADH。这些NADH可经穿梭
38、系统而进入线粒体氧化磷酸化,产生H2O和ATP。 1磷酸甘油穿梭系统:NADH通过此穿梭系统带一对氢原子进入线粒体,则只得到1.5分子ATP。 2苹果酸穿梭系统:经此穿梭系统带入一对氢原子可生成2.5分子ATP第10章 脂代谢 一、脂类的分类和生理功用: 脂类是脂肪和类脂的总称,是一大类不溶于水而易溶于有机溶剂的化合物。其中,脂肪主要是指甘油三酯,类脂则包括磷脂、糖脂、胆固醇及胆固醇酯。 脂类物质具有下列生理功用: 供能贮能:主要是甘油三酯具有此功用,体内20%30%的能量由甘油三酯提供。 构成生物膜:主要是磷脂和胆固醇具有此功用。 协助脂溶性维生素的吸收,提供必需脂肪酸。必需脂肪酸是指机体需
39、要,但自身不能合成,必须要靠食物提供的一些多烯脂肪酸。 保护和保温作用:大网膜和皮下脂肪具有此功用。二、脂肪酸的氧化体内大多数的组织细胞均可以此途径氧化利用脂肪酸。其代谢反应过程可分为三个阶段: 活化:在线粒体外进行此反应过程。由脂酰CoA合成酶催化生成脂酰CoA。每活化一分子脂肪酸,需消耗两分子ATP。 进入:脂酰CoA由肉碱(肉毒碱)携带进入线粒体。 -氧化:由四个连续的酶促反应组成: 脱氢:脂肪酰CoA在脂肪酰CoA脱氢酶的催化下,生成FADH2和,-烯脂肪酰CoA。 水化:在水化酶的催化下,生成L-羟脂肪酰CoA。 再脱氢:在L-羟脂肪酰CoA脱氢酶的催化下,生成-酮脂肪酰CoA和NA
40、DH+H+。 硫解:在硫解酶的催化下,分解生成1分子乙酰CoA和1分子减少了两个碳原子的脂肪酰CoA。后者可继续氧化分解,直至全部分解为乙酰CoA。 三、脂肪酸氧化分解时的能量释放: 以16C的软脂酸为例来计算,则生成ATP的数目为:一分子软脂酸可经七次-氧化全部分解为8分子乙酰CoA,故-氧化可得47=28分子ATP,8分子乙酰CoA可得108=80分子ATP,故一共可得108分子ATP,减去活化时消耗的两分子ATP,故软脂酸可净生成106分子ATP。 对于偶数碳原子的长链脂肪酸,可按下式计算:ATP净生成数目=(碳原子数2 -1)4 + (碳原子数2)10 -2 。 四、 酮体的生成及利用
41、: 脂肪酸在肝脏中氧化分解所生成的乙酰乙酸、-羟丁酸和丙酮三种中间代谢产物,统称为酮体。 1酮体的生成:酮体主要在肝脏的线粒体中生成,其合成原料为乙酰CoA,关键酶是HMG-CoA合成酶。 其过程为:乙酰CoA乙酰乙酰CoA HMG-CoA乙酰乙酸。生成的乙酰乙酸再通过加氢反应转变为-羟丁酸或经自发脱羧生成丙酮。 2酮体的利用过程为:-羟丁酸乙酰乙酸乙酰乙酰CoA乙酰CoA三羧酸循环。 3酮体生成及利用的生理意义: (1) 在正常情况下,酮体是肝脏输出能源的一种形式:由于酮体的分子较小,故被肝外组织氧化利用,成为肝脏向肝外组织输出能源的一种形式。 (2) 在饥饿或疾病情况下,为心、脑等重要器官
42、提供必要的能源:在长期饥饿或某些疾病情况下,由于葡萄糖供应不足,心、脑等器官也可转变来利用酮体氧化分解供能。 五、甘油三酯的合成代谢: 脂肪合成时,首先需要合成长链脂肪酸和3-磷酸甘油,然后再将二者缩合起来形成甘油三酯(脂肪)。 1脂肪酸的合成:脂肪酸合成的原料是葡萄糖氧化分解后产生的乙酰CoA,其合成过程由胞液中的脂肪酸合成酶系催化,不是-氧化过程的逆反应。脂肪酸合成的直接产物是软脂酸,然后再将其加工成其他种类的脂肪酸。 乙酰CoA转运出线粒体:柠檬酸-丙酮酸穿梭作用。 丙二酸单酰CoA的合成:在乙酰CoA羧化酶(需生物素)的催化下,将乙酰CoA羧化为丙二酸单酰CoA。乙酰CoA羧化酶是脂肪
43、酸合成的关键酶,属于变构酶,其活性受柠檬酸激活,受长链脂酰CoA的变构抑制。 脂肪酸合成循环:脂肪酸合成时碳链的缩合延长过程是一类似于-氧化逆反应的循环反应过程,即 缩合加氢脱水再加氢。所需氢原子来源于NADPH,故对磷酸戊糖旁路有依赖。每经过一次循环反应,延长两个碳原子。 脂肪酸合成酶系是一种由一分子脂酰基载体蛋白(ACP)和七种酶单体所构成的多酶复合体; 软脂酸的碳链延长和不饱和脂肪酸的生成:此过程在线粒体/微粒体内进行。使用丙二酸单酰CoA与软脂酰CoA缩合,使碳链延长,最长可达二十四碳。不饱和键由脂类加氧酶系催化形成。 23-磷酸甘油的生成:合成甘油三酯所需的3-磷酸甘油主要由下列两条
44、途径生成:由糖代谢生成:磷酸二羟丙酮加氢生成3-磷酸甘油。甘油经磷酸化后生成3-磷酸甘油。 3甘油三酯的合成:2脂酰CoA + 3-磷酸甘油 磷脂酸 甘油三酯。 第八章 含氮小分子代谢 一、蛋白质的营养作用: 1蛋白质的生理功能:主要有:是构成组织细胞的重要成分;参与组织细胞的更新和修补;参与物质代谢及生理功能的调控;氧化供能;其他功能:如转运、凝血、免疫、记忆、识别等。 2氮平衡:氮总平衡、氮正平衡、氮负平衡3必需氨基酸与非必需氨基酸:体内不能合成,必须由食物蛋白质供给的氨基酸称为必需氨基酸。反之,体内能够自行合成,不必由食物供给的氨基酸就称为非必需氨基酸。 必需氨基酸一共有八种:赖氨酸(L
45、ys)、色氨酸(Trp)、苯丙氨酸(Phe)、蛋氨酸(Met)、苏氨酸(Thr)、亮氨酸(Leu)、异亮氨酸(Ile)、缬氨酸(Val)。 二、氨基酸的脱氨基作用: 氨基酸主要通过三种方式脱氨基,即氧化脱氨基,转氨基和联合脱氨基。 1氧化脱氨基:反应过程包括脱氢和水解两步,反应主要由谷氨酸脱氢酶所催化。谷氨酸脱氢酶是一种不需氧脱氢酶,以NAD+或NADP+为辅酶。该酶作用较大,属于变构酶,其活性受ATP,GTP的抑制,受ADP,GDP的激活。 2转氨基作用:由转氨酶催化,将-氨基酸的氨基转移到-酮酸酮基的位置上,生成相应的-氨基酸,而原来的-氨基酸则转变为相应的-酮酸。转氨酶以磷酸吡哆醛(胺)
46、为辅酶。较为重要的转氨酶有: 丙氨酸氨基转移酶(ALT),又称为谷丙转氨酶(GPT)。催化丙氨酸与-酮戊二酸之间的氨基移换反应,为可逆反应。该酶在肝脏中活性较高,在肝脏疾病时,可引起血清中ALT活性明显升高。 天冬氨酸氨基转移酶(AST),又称为谷草转氨酶(GOT)。催化天冬氨酸与-酮戊二酸之间的氨基移换反应,为可逆反应。该酶在心肌中活性较高,故在心肌疾患时,血清中AST活性明显升高。 3联合脱氨基作用:转氨基作用与氧化脱氨基作用联合进行,从而使氨基酸脱去氨基并氧化为-酮酸的过程,称为联合脱氨基作用。可在大多数组织细胞中进行,是体内主要的脱氨基的方式。 三、-酮酸的代谢: 1再氨基化为氨基酸。 2转变为糖或脂:某些氨基酸脱氨基后生成糖异生途径的中间代谢物,故可经糖异生途径生成葡萄糖,这些氨基酸称为生糖氨基酸。个别氨基酸如Leu,Lys,经代谢后只能生成乙酰CoA或乙酰乙酰CoA,再转变为脂或酮体,故称为生酮氨基酸。而Phe,Tyr,Ile,Thr,Trp经分解后的产物一部分可生成葡萄糖,另一部分则生成乙酰CoA