《高中数学圆的方程典型例题 学生版.doc》由会员分享,可在线阅读,更多相关《高中数学圆的方程典型例题 学生版.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流高中数学圆的方程典型例题 学生版【精品文档】第 8 页高中数学圆的方程典型例题类型一:圆的方程例1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系解法一:(待定系数法)设圆的标准方程为圆心在上,故圆的方程为又该圆过、两点解之得:,所以所求圆的方程为解法二:(直接求出圆心坐标和半径)因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线的方程为:即又知圆心在直线上,故圆心坐标为半径故所求圆的方程为又点到圆心的距离为点在圆外例2 求半径为4,与圆相切,且和直线相切的圆的方程解:则题意,设所求圆的方程为圆圆与
2、直线相切,且半径为4,则圆心的坐标为或又已知圆的圆心的坐标为,半径为3若两圆相切,则或(1)当时,或(无解),故可得所求圆方程为,或(2)当时,或(无解),故所求圆的方程为,或例3 求经过点,且与直线和都相切的圆的方程解:圆和直线与相切,圆心在这两条直线的交角平分线上,又圆心到两直线和的距离相等两直线交角的平分线方程是或又圆过点,圆心只能在直线上设圆心到直线的距离等于,化简整理得解得:或圆心是,半径为或圆心是,半径为所求圆的方程为或例4、 设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程解法一:设圆心为,半
3、径为则到轴、轴的距离分别为和由题设知:圆截轴所得劣弧所对的圆心角为,故圆截轴所得弦长为又圆截轴所得弦长为2又到直线的距离为当且仅当时取“=”号,此时这时有或又故所求圆的方程为或解法二:同解法一,得将代入上式得:上述方程有实根,故,将代入方程得又由知、同号故所求圆的方程为或类型二:切线方程、切点弦方程、公共弦方程例5已知圆,求过点与圆相切的切线解:点不在圆上,切线的直线方程可设为根据 解得 所以 即 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在易求另一条切线为例6 两圆与相交于、两点,求它们的公共弦所在直线的方程分析:首先求、两点的坐标,再用两点式求直线的方程,但是求两圆交点坐
4、标的过程太繁为了避免求交点,可以采用“设而不求”的技巧解:设两圆、的任一交点坐标为,则有:得:、的坐标满足方程方程是过、两点的直线方程又过、两点的直线是唯一的两圆、的公共弦所在直线的方程为例7、过圆外一点,作这个圆的两条切线、,切点分别是、,求直线的方程。练习:1 求过点,且与圆相切的直线的方程2、过坐标原点且与圆相切的直线的方程为 3、已知直线与圆相切,则的值为 .类型三:弦长、弧问题例8、求直线被圆截得的弦的长.例9、直线截圆得的劣弧所对的圆心角为 例10、求两圆和的公共弦长类型四:直线与圆的位置关系例11、已知直线和圆,判断此直线与已知圆的位置关系.例12、若直线与曲线有且只有一个公共点
5、,求实数的取值范围.例13 圆上到直线的距离为1的点有几个?分析:借助图形直观求解或先求出直线、的方程,从代数计算中寻找解答解法一:圆的圆心为,半径设圆心到直线的距离为,则如图,在圆心同侧,与直线平行且距离为1的直线与圆有两个交点,这两个交点符合题意又与直线平行的圆的切线的两个切点中有一个切点也符合题意符合题意的点共有3个解法二:符合题意的点是平行于直线,且与之距离为1的直线和圆的交点设所求直线为,则,即,或,也即,或设圆的圆心到直线、的距离为、,则,与相切,与圆有一个公共点;与圆相交,与圆有两个公共点即符合题意的点共3个练习1:直线与圆没有公共点,则的取值范围是 练习2:若直线与圆有两个不同
6、的交点,则的取值范围是 .3、圆上到直线的距离为的点共有( )(A)1个 (B)2个 (C)3个 (D)4个4、过点作直线,当斜率为何值时,直线与圆有公共点,如图所示PEOyx类型五:圆与圆的位置关系例14、判断圆与圆的位置关系,例15:圆和圆的公切线共有 条。解:圆的圆心为,半径,圆的圆心为,半径,.,两圆相交.共有2条公切线。练习1:若圆与圆相切,则实数的取值集合是 .2:求与圆外切于点,且半径为的圆的方程.类型六:圆中的对称问题例16、圆关于直线对称的圆的方程是 类型七:圆中的最值问题例18:圆上的点到直线的最大距离与最小距离的差是 例19(1)已知圆,为圆上的动点,求的最大、最小值练习
7、:1:已知点在圆上运动.(1) 求的最大值与最小值;(2)求的最大值与最小值.2 设点是圆是任一点,求的取值范围八:轨迹问题例21已知点与两个定点,的距离的比为,求点的轨迹方程.例22、已知线段的端点的坐标是(4,3),端点在圆上运动,求线段的中点的轨迹方程.类型九:圆的综合应用例25、 已知圆与直线相交于、两点,为原点,且,求实数的值分析:设、两点的坐标为、,则由,可得,再利用一元二次方程根与系数的关系求解或因为通过原点的直线的斜率为,由直线与圆的方程构造以为未知数的一元二次方程,由根与系数关系得出的值,从而使问题得以解决解法一:设点、的坐标为、一方面,由,得,即,也即:另一方面,、是方程组的实数解,即、是方程的两个根又、在直线上,将代入,得将、代入,解得,代入方程,检验成立,解法二:由直线方程可得,代入圆的方程,有整理,得由于,故可得,是上述方程两根故得,解得经检验可知为所求