计量作业第2章-第4章.doc

上传人:豆**** 文档编号:35229397 上传时间:2022-08-20 格式:DOC 页数:10 大小:262.50KB
返回 下载 相关 举报
计量作业第2章-第4章.doc_第1页
第1页 / 共10页
计量作业第2章-第4章.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《计量作业第2章-第4章.doc》由会员分享,可在线阅读,更多相关《计量作业第2章-第4章.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、如有侵权,请联系网站删除,仅供学习与交流计量作业第2章-第4章【精品文档】第 10 页第二章 一元线性回归模型1、 最小二乘法对随机误差项u作了哪些假定?说明这些假定条件的意义。答:假定条件:(1)均值假设:E(ui)=0,i=1,2,;(2)同方差假设:Var(ui)=Eui-E(ui)2=E(ui2)=u2 ,i=1,2,;(3)序列不相关假设:Cov(ui,uj)=Eui-E(ui)uj-E(uj)=E(uiuj)=0,ij,i,j=1,2,;(4)Cov(ui,Xi)=Eui-E(ui)Xi-E(Xi)=E(uiXi)=0;(5)ui服从正态分布, uiN(0,u2)。意义:有了这些假

2、定条件,就可以用普通最小二乘法估计回归模型的参数。2、 阐述对样本回归模型拟合优度的检验及回归系数估计值显著性检验的步骤。答:样本回归模型拟合优度的检验:可通过总离差平方和的分解、样本可决系数、样本相关系数来检验。回归系数估计值显著性检验的步骤:(1)提出原假设H0 :1=0; (2)备择假设H1 :10;(3)计算 t=1/S1;(4)给出显著性水平,查自由度v=n-2的t分布表,得临界值t/2(n-2);(5)作出判断。如果|t|t/2(n-2),拒绝H0 ,接受H1:10,表明X对Y有显著影响。4、 试说明为什么ei2的自由度等于n-2。答:在模型中,自由度指样本中可以自由变动的独立不相

3、关的变量个数。当有约束条件时,自由度减少,其计算公式:自由度=样本个数-受约束条件的个数,即df=n-k。一元线性回归中SSE残差的平方和,其自由度为n-2,因为计算残差时用到回归方程,回归方程中有两个未知参数0和1,而这两个参数需要两个约束条件予以确定,由此减去2,也即其自由度为n-2。5、 试说明样本可决系数与样本相关系数的关系及区别,以及样本相关系数与1的关系。答:样本相关系数r的数值等于样本可决系数的平方根,符号与1相同。但样本相关系数与样本可决系数在概念上有明显的区别,r建立在相关分析的理论基础之上,研究两个随机变量X与Y之间的线性相关关系;样本可决系数r建立在回归分析的理论基础之上

4、,研究非随机变量X对随机变量Y的解释程度。6、 已知某市的货物运输量Y(万吨),国内生产总值GDP(亿元,1980年不变价)19851998年的样本观测值见下表(略)。Dependent Variable: YMethod: Least SquaresDate: 10/28/13 Time: 10:25Sample: 1985 1998Included observations: 14VariableCoefficientStd. Errort-StatisticProb.GDP26.954154.1203006.5417920.0000C12596.271244.56710.121010.0

5、000R-squared0.781002Mean dependent var20168.57Adjusted R-squared0.762752S.D. dependent var3512.487S.E. of regression1710.865Akaike info criterion17.85895Sum squared resid35124719Schwarz criterion17.95024Log likelihood-123.0126Hannan-Quinn criter.17.85050F-statistic42.79505Durbin-Watson stat0.859998P

6、rob(F-statistic)0.000028(1) 一元线性回归方程 Yt=12596.27+26.95415GDPt(2) 结构分析 1=26.95425是样本回归方程的斜率,它表示某市货物运输量的情况,说明货物运输量每增加1亿元,将26,95425用于国内生产总值;0=12596.27是样本回归方程的截距,它表示不受货物运输量影响的国内生产总值。(3)统计检验 r2=0.78 说明总离差平方和的78被样本回归直线解释,有22没被解释,说明样本回归直线对样本点的拟合优度还是比较高的。 显著性水平 =0.05,查自由度v=14-2=12的t分布表,得临界值t0.025(12)=2.18(4

7、)预测区间19802000obsGDPRESIDYYFYFSE198019811982198319841985161.691294.518170471381824916954.481829528621837.8050429478071986171.071317.6882638304891852517207.311736169511827.8522585717681987184.07842.28434204673981840017557.715657953261815.3290745659511988194.75-1152.5859567725241669317845.5859567725318

8、06.1647435845771989197.86-2386.4133565223311554317929.413356522331803.6891930532051990208.55-2288.5531968198881592918217.553196819891795.8513778573231991221.06-246.74958616717411830818554.749586167181788.0138737937551992246.92-1729.783849038541752219251.783849038541776.4503159894641993276.81582.8262

9、138154242164020057.173786184581770.9956488707011994316.382658.9810427230552378321124.018957276941776.9262940212641995363.521645.3625140395232404022394.637485960481803.3104801280861996415.51337.01636838282142413323795.983631617181855.6949869099331997465.78-60.968643007108762509025150.968643007111927.

10、7472141730071998509.1-1813.622326981882450526318.622326981882004.9827372665981999200062029307.837321275562255.639096466328单个值预测区间 Y200029307.84-2.102255.64,29307.84+2.102255.64均值预测区间 E(Y2000)29307.84-2.102255.64,29307.84+2.102255.648、查中国统计年鉴,利用19782000的财政收入和GDP的统计资料,要求以手工和EViews软件。(1)散点图Dependent Va

11、riable: YMethod: Least SquaresDate: 10/29/13 Time: 16:40Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb.GDP0.9860970.001548637.03830.0000C174.417150.395893.4609390.0023R-squared0.999948Mean dependent var22634.30Adjusted R-squared0.999946S.D. dependent var23455.

12、82S.E. of regression172.6972Akaike info criterion13.22390Sum squared resid626310.6Schwarz criterion13.32264Log likelihood-150.0748Hannan-Quinn criter.13.24873F-statistic405817.8Durbin-Watson stat0.984085Prob(F-statistic)0.000000一元线性回归方程 Y=174.4174+0.98GDPt经济意义 国名收入每增加1亿元,将有0.98亿元用于国内生产总值。(2)检验 r=99,

13、说明总离查平方和的99被样本回归直线解释,仅有1未被解释,所以说样本回归直线对样本点的拟合优度很高。 显著性水平=0.05,查自由度v=23-2=21的t分布表,得临界值t0.025(21)=2.08。(3)预测值及预测区间obsYYFYFSEGDP19783645.23768.939527560003178.87990788736163645.219794062.64180.536602486764178.77407772894174062.619804545.6000000000014656.821670023003178.65445312373664545.600000000001198

14、14889.54998.011387140059178.57063446903184891.60000000000119824889.54998.011387140059178.57063446903184891.60000000000119835330.55423.808265322558178.46823011388035323.39999999999919845985.66054.220364030461178.32110832662425962.719857243.87282.306126162203178.04995048489017208.119869040.70000000000

15、19065.07170297124177.69280630099319016198712050.612065.37179921504177.189939863891612058.6198810274.410306.76560988973177.469705227405810275.2198912050.612065.37179921504177.189939863891612058.6199015036.815008.08380447724176.817239439131815042.8199117000.916930.48077996771176.638587454027716992.319

16、9218718.318582.68705461982176.526126442387818667.819933526035017.08573798564177.479184885403835333.9199421826.221653.09867943883176.418239372446321781.5199526937.326723.61175867555176.528268981976926923.519963526035017.08573798564177.479184885403835333.9199748108.547702.24331311228180.74707707115964

17、8197.9199859810.560122.92955260078185.968135704457960793.7199988479.288604.77659126783204.561247885819189677.1200070142.570361.48074871261191.661404210209271176.62001104413.7922729122218.1766346781298105709单个值的预测区间 Y2000104413.8-2.07218.2,104413.8+2.07218.2均值预测区间 E(Y2000)104413.8-2.07218.2,104413.8+

18、2.07218.2第三章 多元线性回归模型2、试对二元线性回归模型Yi=0+1X1i+2X2i+ui,i=1,2,3,n作回归分析:(1)求出未知参数0,1,2的最小二乘估计量0,1,2;(2)求出随机误差项u的方差2的无偏估计量;(3) 对样本回归方差拟合优度检验;(4) 对总体回归方程的显著性进行F检验;(5) 对1,2的显著性进行t检验;(6) 当X0=(1,X10,X20)时,写出E(Y0/X0)的置信度为95%的预测区间。答:(1)由公式可得出。其中,(2) 随机误差项的方差的无偏差估计量为 (3) 求出样本可决系数R-squared,修正样本可决系数为 =Adjusted-squa

19、red,比较 和值大小关系,即可得出样本回归方差拟合优度。(4) 提出检验的原假设对立假设为 :至少有一个不等于零(),由题意得F的统计量为 F-statistic 。对于给定的显著性水平,;从附录4的表1中,查出分子自由度为,分母自由度为的F分布上侧位数。由F-statistic与的值大小关系,可得显著性关系。(5)提出检验的原假设,求出t统计量 -statistic。对于给定的显著性水平=0.05,;从附录4的表1中,查出t分布的自由度为f的t分布双侧位数。比较-statistic与值的大小关系,可得检验结果的显著性关系。 (6)E(YOXO)的预测区间:(Y0-t/2(v)S(Y0),Y

20、0+t/2(v)S(Y0) ; YO的预测区间:(Y0-t/2(v)S(e0),Y0+t/2(v)S(e0) 3、经研究发现,学生用于购买书籍及课外读物的支出与本人受教育年限和其家庭收入水平有关,对18名学生进行调查的统计资料如下表所示(略)。 Dependent Variable: YMethod: Least SquaresDate: 10/29/13 Time: 22:18Sample: 1 18Included observations: 18VariableCoefficientStd. Errort-StatisticProb.X20.4022890.1163593.4573190

21、.0035X1104.30816.40970916.273450.0000C-0.96298030.32507-0.0317550.9751R-squared0.979722Mean dependent var755.1556Adjusted R-squared0.977019S.D. dependent var258.6819S.E. of regression39.21512Akaike info criterion10.32701Sum squared resid23067.39Schwarz criterion10.47541Log likelihood-89.94312Hannan-

22、Quinn criter.10.34748F-statistic362.3656Durbin-Watson stat2.561545Prob(F-statistic)0.000000回归方程 Y=-0.96+104.3X1+0.4X2(2)检验设原假设 H0:i=0 i=1,2根据上表中的计算结果知:S(1)=6.409709 S(2)=0.116359将S(1)和S(2)的值代入检验统计量式中,得T1=1S(1)=16.2735 t2=2S(2)=3.4561对于给定的显著水平=0.05,自由度为v=15的双侧分位数t0.05/2=2.13。因为 t1t0.05/2 t2t0.05/2,所以

23、否定H0:10,H0:20,即可以认为受教育年限和家庭收入对学生购买书籍以及课外读物有显著性影响。(3) R2=RSS/TSS=0.979722 R2=1-(1-R2)n-1/n-k-1=0.97702(4)预测区间obsYYFYFSEX2X11450.5485.141174769264842.17365506624408171.242507.7486.348041790102142.10363828287697174.243613.9602.765010184497741.60234303786757204.354563.4504.249902599188841.39814289671567

24、218.745501.5504.531504904050941.39212417827067219.446781.5825.903781905896542.97924483690921240.477541.7999999999999526.295340179816941.41179733769013273.548611.1639.1721653130940.55748283418582294.8591222.11174.95354258561147.47686324319662330.21010793.2863.195972849769340.68970052896574333.1711660

25、.8667.815142607628641.63232216941219366512792.7766.048647888075840.41271901973422350.9613580.9560.248532366039743.30987322087763357.9414612.7664.999119559008441.45455915514781359515890.8878.804786319265140.55307988286174371.971611211112.92604793028342.49588607436637435.39171094.21044.2607846603543.6

26、3918011814712523.981812531285.14050158805746.39915863939679604.110191235.21643582608744.1250725573282348010单个值的预测区间 Y1235.216-2.1344.125,1235.216+2.1344.125均值的预测区间 E(Y)1235.216-2.1344.125,1235.216+2.1344.1254、假设投资函数模型估计的回归方程为:It=5.0+0.4Yt+0.6It-1,R2=0.8,DW=2.05,n=24其中It和Yt分别为第t期投资和国民收入(1)对总体参数1,2的显著

27、性进行检验(=0.05)(2)若总离差平方和TSS=25,试求随机误差项ut方差的估计量(3)计算F统计量,并对模型总体的显著性进行检验(=0.05)答:(1)首先提出检验的原假设H0:1=0,i=1,2,。由题意知t的统计量值为t1=4.0,t2=3.2。对于给定的显著性水平=0.05,;从附录4的表1中,查出t分布的自由度为v=21的双侧分数位t0.05/2(21)=1.72。因为t1=4.0 t0.05/2(21)=1.72,所以否定H0,1显著不等于零即可以认为第t期投资对国民收入有显著影响;t2=3.2 t0.05/2(21)=1.72。所以否定H0,2显著不等于零即可以认为第t期投

28、资对第t-1期投资有显著影响。(2)R2 =RSS=R2TSS=0.825=20.ut的方差估计量为: (3)提出检验的原假设H0:1=2=0,F=42,对于给定的显著性水平=0.05,从附录4的表3中,查出分分子自由度为2,分母自由度为21的F分布上侧位数F0.05/2(21)=3.47。因为F=423.47,所以否定H0,总体回归方程存在显著的线性关系,即第t期投资与第t-1期投资和第t期国民收入的线性关系是显著的。6、已知某地区某农产品收购量Y,销售量X1,出口量X2,库存量X3的19551984年的样本观测值见下表。试建立以收购量Y为被解释变量的多元线性回归模型并预测。根据题意可设方程

29、为Y=0+1X1+2X2+3X3,利用Eview可知,Dependent Variable: YMethod: Least SquaresDate: 10/29/13 Time: 22:55Sample: 1955 1984Included observations: 30VariableCoefficientStd. Errort-StatisticProb.X30.1509710.0833181.8119840.0816X22.9240951.6553241.7664800.0891X10.9191200.2358963.8962880.0006C0.4372724.0505750.107

30、9530.9149R-squared0.600052Mean dependent var22.13167Adjusted R-squared0.553904S.D. dependent var14.47259S.E. of regression9.666307Akaike info criterion7.498736Sum squared resid2429.375Schwarz criterion7.685562Log likelihood-108.4810Hannan-Quinn criter.7.558503F-statistic13.00281Durbin-Watson stat1.1

31、53567Prob(F-statistic)0.000022回归方程 Y=0.437+0.919X1+2.924X2+0.151X3第四章 非线性回归模型的线性化1某商场1990年1998年间皮鞋销售额(万元)的统计资料如下表所示。(表略)考虑指数模型lnY=+t+ut,试利用上表的数据进行回归分析,并预测1999年该商场皮鞋的销售额。答:Dependent Variable: YMethod: Least SquaresDate: 10/30/13 Time: 21:52Sample: 1990 1998Included observations: 9VariableCoefficientS

32、td. Errort-StatisticProb.T4.0883330.4195079.7455740.0000C-4.1861112.360696-1.7732530.1195R-squared0.931357Mean dependent var16.25556Adjusted R-squared0.921550S.D. dependent var11.60163S.E. of regression3.249485Akaike info criterion5.388000Sum squared resid73.91406Schwarz criterion5.431828Log likelih

33、ood-22.24600Hannan-Quinn criter.5.293420F-statistic94.97621Durbin-Watson stat0.542289Prob(F-statistic)0.000025根据上表建立回归模型为Y = 4.08833333333*T - 4.1861111111根据回归模型知道1999年该商场皮鞋销售量为Y=36.6942美国在1790年1990年间每10年的人口总数Y(百万人)的统计资料如下表所示。(表略)考虑指数增长模型:Y=Aet+u,试利用上表的数据进行回归分析,并预测美国2000年的人口总数。答:3印度在1948年1964年间的名义货币

34、存量(现金余额)Mt(n),名义国民收入Yt(n),内含价格缩减指数(Implic it Price Deflator,也称综合价格换算系数)Pt,长期利率rt的统计资料如下表所示。用内含价格缩减指数分别除名义货币存量和名义国民收入,得实际货币存量和实际国民收入,记为Mt,Yt。(表略)(1)考虑货币需求函数模型 Mt(n)= 0Yt1rt2Pt3eut利用最小二乘法估计该模型,判断3估计值的符号是否合理,并对估计的回归方程解释其经济意义。(2)考虑货币需求函数模型 Mt(n)= 0(Yt(n) 1rt2Pt3eut利用最小二乘法估计该模型,说明1和1之间的关系。(3) 考虑货币需求函数模型 Mt=0Yt1rt2eut利用最小二乘法估计该模型,确定实际货币存量关于实际国民收入及长期利率的弹性。(4) 考虑货币需求函数模型 ()t=rteut利用最小二乘法估计该模型,并对估计的回归方程解释其经济意义。(5)对上述4个模型进行显著性检验,并加以比较。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁