《【创新方案】2013年高考数学一轮复习-第九篇-解析几何-第6讲-双曲线教案-理-新人教版.doc》由会员分享,可在线阅读,更多相关《【创新方案】2013年高考数学一轮复习-第九篇-解析几何-第6讲-双曲线教案-理-新人教版.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第6讲双曲线【2013年高考会这样考】1考查利用基本量求双曲线的标准方程,考查双曲线的定义、几何图形2考查求双曲线的几何性质及其应用【复习指导】本讲复习时,应紧扣双曲线的定义,熟练掌握双曲线的标准方程、几何图形以及简单的几何性质、近几年高考多以选择题填空题进行考查基础梳理1双曲线的概念平面内与两个定点F1,F2(|F1F2|2c0)的距离的差的绝对值为常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线这两个定点叫双曲线的焦点,两焦点间的距离叫做焦距集合PM|MF1|MF2|2a,|F1F2|2c,其中a、c为常数且a0,c0;(1)当ac时,P点不存在2双曲线的标准方程和几何性质标准方程1
2、(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴对称中心:原点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,),其中c实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2a2b2(ca0,cb0)一条规律双曲线为等轴双曲线双曲线的离心率e双曲线的两条渐近线互相垂直(位置关系)两种方法(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a、2b或2c,从而求出
3、a2、b2,写出双曲线方程(2)待定系数法:先确定焦点是在x轴上还是在y轴上,设出标准方程,再由条件确定a2、b2的值,即“先定型,再定量”;如果焦点位置不好确定,可将双曲线方程设为(0),再根据条件求的值三个防范(1)区分双曲线中的a,b,c大小关系与椭圆a,b,c关系,在椭圆中a2b2c2,而在双曲线中c2a2b2.(2)双曲线的离心率大于1,而椭圆的离心率e(0,1)(3)双曲线1(a0,b0)的渐近线方程是yx,1(a0,b0)的渐近线方程是yx.双基自测1(人教A版教材习题改编)双曲线1的焦距为()A3 B4 C3 D4解析由已知有c2a2b212,c2,故双曲线的焦距为4.答案D2
4、(2011安徽)双曲线2x2y28的实轴长是()A2 B2 C4 D4解析双曲线2x2y28的标准方程为1,所以实轴长2a4.答案C3(2012烟台调研)设双曲线1(a0,b0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为()Ayx By2xCyx Dyx解析由题意得b1,c.a,双曲线的渐近线方程为yx,即yx.答案C4(2011山东)已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为A.1 B.1C.1 D.1解析圆心的坐标是(3,0),圆的半径是2,双曲线的渐近线方程是bxay0,根据已知得2,即2,解得b2,则a25
5、,故所求的双曲线方程是1.答案A5(2012银川质检)设P是双曲线1上一点,双曲线的一条渐近线方程为3x2y0,F1、F2分别是双曲线的左、右焦点,若|PF1|3,则|PF2|等于_解析由渐近线方程yx,且b3,得a2,由双曲线的定义,得|PF2|PF1|4,又|PF1|3,|PF2|7.答案7考向一双曲线定义的应用【例1】(2011四川)双曲线1上一点P到双曲线右焦点的距离是4,那么点P到左准线的距离是_审题视点 利用双曲线的第一定义和第二定义解题解析由已知,双曲线中,a8,b6,所以c10,由于点P到右焦点的距离为4,4ac18,所以点P在双曲线右支上由双曲线定义,可知点P到左焦点的距离为
6、28420,设点P到双曲线左准线的距离为d,再根据双曲线第二定义,有,故d16.答案16 由双曲线的第一定义可以判断点P的位置关系,在利用第二定义解题时,要注意左焦点与左准线相对应,右焦点与右准线相对应【训练1】 (2012太原重点中学联考)在平面直角坐标系xOy中,已知双曲线1上一点M的横坐标为3,则点M到此双曲线的右焦点的距离为_解析由题易知,双曲线的右焦点为(4,0),点M的坐标为(3,)或(3,),则点M到此双曲线的右焦点的距离为4.答案4考向二求双曲线的标准方程【例2】(2012东莞调研)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差
7、的绝对值等于8,则曲线C2的标准方程为()A.1 B.1C.1 D.1审题视点 抓住C2上动点满足的几何条件用定义法求方程解析由题意知椭圆C1的焦点坐标为:F1(5,0),F2(5,0)设曲线C2上的一点P.则|PF1|PF2|8.由双曲线的定义知:a4,b3.故曲线C2的标准方程为1.答案A (1)当焦点位置不确定时,方程可能有两种形式,求方程时应分类讨论,或者将方程设为mx2ny21(mn0)(2)已知双曲线的渐近线方程bxay0,求双曲线方程时,可设双曲线方程为b2x2a2y2(0)根据其他条件确定的值若求得0,则焦点在x轴上;若求得0,则焦点在y轴上【训练2】 (2012郑州模拟)已知
8、双曲线1(a0,b0)的一条渐近线方程是yx,它的一个焦点与抛物线y216x的焦点相同则双曲线的方程为_解析双曲线的渐近线为yx,双曲线的一个焦点与y216x的焦点相同c4.由可知a24,b212.双曲线的方程为1.答案1.考向三双曲线的几何性质的应用【例3】(2011浙江)已知椭圆C1:1(ab0)与双曲线C2:x21有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点若C1恰好将线段AB三等分,则()Aa2 Ba213 Cb2 Db22审题视点 取一条C2的渐近线,将其与C1联立求得弦长|AB|,令|AB|a,方可得出结论解析依题意a2b25,根据对称性,不妨取一条渐近线
9、y2x,由,解得x,故被椭圆截得的弦长为,又C1把AB三等分,所以,两边平方并整理得a211b2,代入a2b25得b2.答案C 在双曲线的几何性质中,应充分利用双曲线的渐近线方程,简化解题过程同时要熟练掌握以下三方面内容:(1)已知双曲线方程,求它的渐近线; (2)求已知渐近线的双曲线的方程; (3)渐近线的斜率与离心率的关系,如k.【训练3】 (2010辽宁)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A. B. C. D.解析设双曲线方程为1(a0,b0),F(c,0),B(0,b),则kBF,双曲线的渐近线方程为yx,1,
10、即b2ac,c2a2ac,e2e10,解得e.又e1,e.答案D难点突破21高考中椭圆与双曲线的离心率的求解问题离心率是圆锥曲线的重要几何性质,是高考重点考查的一个知识点这类问题一般有两类:一类是根据一定的条件求椭圆或双曲线的离心率;另一类是根据一定的条件求离心率的取值范围无论是哪类问题,其难点都是建立关于a,b,c的关系式(等式或不等式),并且最后要把其中的b用a,c表达,转化为关于离心率e的关系式,这是化解有关椭圆和双曲线的离心率问题难点的根本方法【示例1】 (2010广东)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是() A. B. C. D.【示例2】 (2011福建)设圆锥曲线的两个焦点分别为F1,F2.若曲线上存在点P满足|PF1|F1F2|PF2|432,则曲线的离心率等于()A.或 B.或2C.或2 D.或