高中物理向心加速度教案.docx

上传人:叶*** 文档编号:34953455 上传时间:2022-08-19 格式:DOCX 页数:14 大小:194.27KB
返回 下载 相关 举报
高中物理向心加速度教案.docx_第1页
第1页 / 共14页
高中物理向心加速度教案.docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《高中物理向心加速度教案.docx》由会员分享,可在线阅读,更多相关《高中物理向心加速度教案.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、6 向心加速度整体设计 本节内容是在原有加速度概念的根底上来探讨“匀速圆周运动速度变更快慢”的问题. 向心加速度的方向是本节的学习难点和重点.要化解这个难点,首先要抓住要害,该要害就是“速度变更量”.对此,可以先介绍直线运动的速度变更量,然后渐渐过渡到曲线运动的速度变更量,并让学生驾驭怎样通过作图求得曲线运动的速度变更量,进而最终得出向心加速度的方向. 向心加速度的表达式是本节的另一个重点内容.可以利用书中设计的“做一做:探究向心加速度的表达式”,让学生在教师的指导下自己推导得出,使学生在“做一做”中可以品味到自己探究的成果,体会成就感. 在分析匀速圆周运动的加速度方向和大小时,对不同的学生要

2、求不同,这为学生供应了呈现思维的舞台,因此,在教学中要留意教材的这种开放性,不要“一刀切”.这局部内容也可以以小组探讨的方式进展,然后由学生代表阐述自己的推理过程.教学重点1.理解匀速圆周运动中加速度的产生缘由.2.驾驭向心加速度确实定方法和计算公式.教学难点 向心加速度方向确实定和公式的应用.课时支配 1课时三维目的学问及技能1.理解速度变更量和向心加速度的概念.2.知道向心加速度和线速度、角速度的关系式.3.可以运用向心加速度公式求解有关问题.过程及方法1.体验向心加速度的导出过程.2.领悟推导过程中用到的数学方法.情感看法及价值观 培育学生思维实力和分析问题的实力,培育学生探究问题的热忱

3、、乐于学习的品质.课前打算 教具打算:多媒体课件、实物投影仪等.学问打算:复习以前学过的加速度概念以及曲线运动的有关学问,并做好本节内容的预习.教学过程导入新课情景导入 通过前面的学习我们知道在现实生活中,物体都要在肯定的外力作用下才能做曲线运动,如下列两图(课件展示). 地球绕太阳做(近似的)匀速圆周运动 小球绕桌面上的图钉做匀速圆周运动 对于图中的地球和小球,它们受到了什么样的外力作用它们的加速度大小和方向如何确定复习导入 前面我们已经学习了曲线运动的有关学问,请完成以下几个问题:问题1.加速度是表示_的物理量,它等于_的比值.在直线运动中,v0表示初速度,vt表示末速度,则速度变更量v=

4、_,加速度公式a=_,其方向及速度变更量方向_.2.在直线运动中,取初速度v0方向为正方向,假如速度增大,末速vt大于初速度v0,则v=vtv0_0(填“”或 “ 一样 相反3.v=r对于匀速圆周运动中的加速度又有哪些特点呢推动新课一、速度变更量引入:从加速度的定义式a=可以看出,a的方向及v一样,那么v的方向又是怎样的呢?指导学生阅读教材中的“速度变更量”局部,引导学生在练习本上画出物体加速运动和减速运动时速度变更量v的图示。问题:1.速度的变更量v是矢量还是标量?2.假如初速度v1和末速度v2不在同始终线上,如何表示速度的变更量v?投影学生所画的图示,点评、总结并强调:结论:(1)直线运动

5、中的速度变更量假如速度是增加的,它的变更量及初速度方向一样(甲);假如速度是减小的,其速度变更量就及初速度的方向相反(乙).(2)曲线运动中的速度变更量 物体沿曲线运动时,初末速度v1和v2不在同始终线上,速度的变更量v同样可以用上述方法求得.例如,物体沿曲线由A向B运动,在A、B两点的速度分别为v1、v2.在此过程中速度的变更量如图所示. 可以这样理解:物体由A运动到B时,速度获得一个增量v,因此,v1及v的矢量和即为v2.我们知道,求力F1和F2的合力F时,可以以F1、F2为邻边作平行四边形,则F1、F2所夹的对角线就表示合力F.及此类似,以v1和v为邻边作平行四边形,两者所夹的对角线就是

6、v1和v的矢量和,即v2,如图所示.因为AB及CD平行且相等,故可以把v1、v、v2放在同一个三角形中,就得到如图所示的情形.这种方法叫矢量的三角形法. 利用课件动态模拟不同状况下的v,扶植学生更直观地理解这个物理量.二、向心加速度1.向心加速度的方向 课件展示图,并给出以下问题,引导学生阅读教材“向心加速度”局部:问题:(1)在A、B两点画速度矢量vA和vB时,要留意什么?(2)将vA的起点移到B点时要留意什么?(3)如何画出质点由A点运动到B点时速度的变更量v?(4)vt表示的意义是什么?(5)v及圆的半径平行吗?在什么条件下,v及圆的半径平行? 让学生亲历学问的导出过程,体验胜利的乐趣.

7、探讨中要倾听学生的答复,必要时给学生以有益的启发和扶植,引导学生解决疑难,答复学生可能提出的问题.利用课件动态展示上述加速度方向的得出过程.结论:上面的推导不涉及“地球公转”“小球绕图钉转动”等详细的运动,结论具有一般性:做匀速圆周运动的物体加速度指向圆心,这个加速度称为向心加速度.2.向心加速度的大小引入:匀速圆周运动的加速度方向明确了,它的大小及什么因素有关呢?(1)公式推导 指导学生依据书中“做一做”栏目中的提示,在练习本上推导出向心加速度大小的表达式,也就是下面这两个表达式:an= an=r2 巡察学生的推导状况,解决学生推导过程中可能遇到的困难,赐予扶植,答复学生可能提出的问题. 投

8、影学生推导的过程,和学生一起点评、总结.推导过程如下: 在图中,因为vA及OA垂直,vB及OB垂直,且vA=vB,OA=OB,所以OAB及vA、vB、v组成的矢量三角形相像.用v表示vA和vB的大小,用l表示弦AB的长度,则有或v=l用t除上式得当t趋近于零时,表示向心加速度a的大小,此时弧对应的圆心角很小,弧长和弦长相等,所以l=r,代入上式可得an=v利用v=r可得an=或an=r2.(2)对公式的理解 引导学生思索并完成“思索及探讨”栏目中提出的问题,深化本节课所学的内容. 强调:在公式y=kx中,说y及x成正比的前提条件是k为定值.同理,在公式an=中,当v为定值时,an及r成反比;在

9、公式an=r2中,当为定值时,an及r成正比.因此,这两个结论是在不同的前提下成立的,并不冲突.对于大、小齿轮用链条相连时,两轮边缘上的点线速度必相等,即有vA=vB=v.又aA=,aB=,所以A、B两点的向心加速度及半径成反比.而小齿轮及后轮共轴,因此两者有共同的角速度,即有B=C=.又aB=rB2,aC=rC2,所以B、C两点的向心加速度及半径成正比.(3)向心加速度的几种表达式问题:除了上面的an=、an=r2外,向心加速度还有哪些形式呢?先让学生思索,适时提示转速、频率、周期等因素.结论:联络=2f,代入an=r2可得:an=和an=42f2r.至此,我们常遇到的向心加速度表达式有以上

10、五种.3.向心加速度的物理意义 因为向心加速度方向始终指向圆心,及线速度方向垂直,只变更线速度的方向,不变更其大小,所以向心加速度是描绘线速度方向变更快慢的物理量.典例探究(题目先课件展示,让学生思索后再给出解析内容)例1 关于北京和广州随地球自转的向心加速度,下列说法中正确的是( )A.它们的方向都沿半径指向地心B.它们的方向都在平行赤道的平面内指向地轴C.北京的向心加速度比广州的向心加速度大D.北京的向心加速度比广州的向心加速度小解析:如图所示,地球外表各点的向心加速度方向(同向心力的方向)都在平行赤道的平面内指向地轴.选项B正确,选项A错误.在地面上纬度为的P点,做圆周运动的轨道半径r=

11、R0cos,其向心加速度为an=r2=R02cos. 由于北京的地理纬度比广州的地理纬度大,北京随地球自转的半径比广州随地球自转的半径小,两地随地球自转的角速度一样,因此北京随地球自转的向心加速度比广州的小,选项D正确,选项C错误.答案:BD点评:因为地球自转时,地面上的一切物体都在垂直于地轴的平面内绕地轴做匀速圆周运动,它们的转动中心(圆心)都在地轴上,而不是地球球心,向心力只是引力的一局部(另一局部是重力),向心力指向地轴,所以它们的向心加速度也都指向地轴.例2 如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点.左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,距

12、小轮中心的间隔 为r,c点和d点分别位于小轮和大轮的边缘上.若在传动过程中皮带不打滑,则( )A.a点及b点的线速度大小相等 B.a点及b点的角速度大小相等C.a点及c点的线速度大小相等 D.a点及d点的向心加速度相等解析:如皮带不打滑,a、c两点的线速度相等,故C选项正确.又a、c两点半径不同,则角速度不同,由v=r得a=2c. 同一轮上各点角速度相等,所以B选项是不正确的.但同一轮上各点线速度不等,即b、c两点的线速度不等,所以b及a两点的线速度也不相等,A选项也不正确.向心加速度a=r2,得a、d两点的向心加速度分别为aa=ra2和ad=4r=4r()2=ra2,所以aa=ad,选项D正

13、确.答案:CD课堂训练1.关于向心加速度的物理意义,下列说法正确的是( )A.它描绘的是线速度方向变更的快慢 B.它描绘的是线速度大小变更的快慢C.它描绘的是向心力变更的快慢 D.它描绘的是角速度变更的快慢解析:向心加速度不变更线速度的大小,只变更其方向.答案:A2.一小球被细线拴着做匀速圆周运动,其半径为R,向心加速度为a,则( )A.小球相对于圆心的位移不变 B.小球的线速度为C.小球在时间t内通过的路程s= D.小球做圆周运动的周期T=2s解析:小球做匀速圆周运动,各时刻相对圆心的位移大小不变,但方向时刻在变.由a=得v2=Ra,所以v=在时间t内通过的路程s=vt=做圆周运动的周期T=

14、.答案:BD3.由于地球自转,比拟位于赤道上的物体1及位于北纬60的物体2,则( )A.它们的角速度之比12=21 B.它们的线速度之比v1v2=21C.它们的向心加速度之比a1a2=21 D.它们的向心加速度之比a1a2=41解析:同在地球上,物体1及物体2的角速度必相等.设物体1的轨道半径为R,则物体2的轨道半径为Rcos60,所以v1v2=RRcos60=21a1a2=2R2Rcos60=21.答案:BC4.如图为甲、乙两球做匀速圆周运动时向心加速度随半径变更的图象,其中甲的图线为双曲线.由图象可知,甲球运动时,线速度大小_(填“变更”或“不变”,下同),角速度_;乙球运动时,线速度大小

15、_,角速度_.解析:由图可知,甲的向心加速度及半径成反比,依据公式a=,甲的线速度大小不变;而由图可知,乙的加速度及半径成正比,依据公式a=2r,说明乙的角速度不变.答案:不变 变更 变更 不变5.如图所示皮带传动轮,大轮直径是小轮直径的3倍,A是大轮边缘上一点,B是小轮边缘上一点,C是大轮上一点,C到圆心O1的间隔 等于小轮半径,转动时皮带不打滑.则A、B、C三点的角速度之比ABC=_,向心加速度大小之比aAaBaC=_.解析:A及B的线速度大小相等,A及C的角速度相等.答案:131 391课堂小结 课件展示本课小节:1.向心加速度的定义、物理意义;2.向心加速度的方向:指向圆心;3.向心加

16、速度的大小:4.向心加速度的方向时刻变更 布置作业 教材“问题及练习”第2、3、4题板书设计6 向心加速度一、速度的变更量 加速度a=,a的方向及v一样 v的方向: 矢量三角形二、向心加速度1.方向:做匀速圆周运动的物体,加速度指向圆心.2.大小:an=r2=42f2r.3.意义:始终指向圆心,及v垂直,只变更v的方向,不变更其大小,是描绘线速度方向变更快慢的物理量.活动及探究课题:探讨电视画面中汽车轮胎的正反问题.过程:在电视画面中我们经常会看到一辆向前奔驰的汽车,它的轮子一会儿在正转,一会儿又在倒转.假设轮子的辐条如图所示,请说明造成这种现象的缘由是什么,并分析什么状况下出现正转现象,什么

17、状况下出现倒转现象.(参考资料:电视画面是每隔1/30 s更迭一帧,人的视觉暂留时间为0.1 s)图5-6-12习题详解1.解答:本题主要考察对向心加速度的各种表达式的理解和驾驭.线速度相等时,考虑a=周期相等时,考虑a=角速度相等时,乙的线速度小,考虑a=v线速度相等时,甲的角速度大,考虑a=v.所以:A.乙的向心加速度大B.甲的向心加速度大C.甲的向心加速度大D.甲的向心加速度大2.解答:已知周期,由=,代入a=2r得a=.将已知数据统一成国际单位后代入得a=3.84108 m/s2=2.710-3 m/s2.3.解答:在一样时间内的路程之比为43,则由v=知线速度之比为43;又已知运动方

18、向变更的角度之比是32,所以角速度之比为32.利用公式a=v可得.4.解答:两轮边缘上各点的线速度必相等,则有v1=v2=v.又因为r1r2=13,所以12=31.(1)两轮的转速比等于角速度之比,即有n1n2=12=31.(2)在同一轮上各点的角速度必相等.由a=2r知,A点的转动半径为机器皮带轮的一半,故A点的向心加速度为轮边缘的向心加速度的一半,即aA=0.05 m/s2.(3)电动机皮带轮边缘上点的向心加速度a1=机器皮带轮边缘上点的向心加速度a2=所以a1a2=r2r1=31得a1=3a2=0.30 m/s2.设计点评 思维方法是解决问题的灵魂,是物理教学的根本;亲自理论参及学问的发觉过程是培育学生实力的关键,本课的设计就特殊留意了这一点.另外,多媒体的敏捷应用也能很好地扶植学生理解有关概念.典型例题和针对性的演练题目也是本课的重要组成局部,可使学生更深地理解和应用学问.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁