高中数学新人教版必修5全套教案原创.docx

上传人:叶*** 文档编号:34952080 上传时间:2022-08-19 格式:DOCX 页数:59 大小:2.57MB
返回 下载 相关 举报
高中数学新人教版必修5全套教案原创.docx_第1页
第1页 / 共59页
高中数学新人教版必修5全套教案原创.docx_第2页
第2页 / 共59页
点击查看更多>>
资源描述

《高中数学新人教版必修5全套教案原创.docx》由会员分享,可在线阅读,更多相关《高中数学新人教版必修5全套教案原创.docx(59页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、111正弦定理教学目的学问与技能:通过对随意三角形边长和角度关系的探究,驾驭正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类根本问题。过程与方法:让学生从已有的几何学问动身,共同探究在随意三角形中,边与其对角的关系,引导学生通过视察,推导,比拟,由特殊到一般归纳出正弦定理,并进展定理根本应用的理论操作。情感看法与价值观:培育学生在方程思想指导下处理解三角形问题的运算实力;培育学生合情推理探究数学规律的数学思思想实力,通过三角形函数、正弦定理、向量的数量积等学问间的联络来表达事物之间的普遍联络与辩证统一。教学重点正弦定理的探究和证明及其根本应用。教学难点已知两边和其中

2、一边的对角解三角形时推断解的个数。教学过程一.课题导入BCA如图11-1,固定ABC的边CB及B,使边AC围着顶点C转动。 思索:C的大小与它的对边AB的长度之间有怎样的数量关系?明显,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系准确地表示出来? 二.讲授新课探究讨论 在初中,我们已学过如何解直角三角形,下面就首先来讨论直角三角形中,角与边的等式关系。如图,在RtABC中,设BC=a,AC=b,AB=c, 依据锐角三角函数中正弦函数的定义,CAB有,又, 则 从而在直角三角形ABC中, 思索1:那么对于随意的三角形,以上关系式是否仍旧成立?(由学生讨论、分析)可分为锐角

3、三角形和钝角三角形两种状况:如图11-3,(1)当ABC是锐角三角形时,设边AB上的高是CD,依据随意角三角函数的定义,有CD=,则, C同理可得, b a从而 A c B(2)当ABC是钝角三角形时,以上关系式仍旧成立。(由学生课后自己推导)思索2:还有其方法吗? 由于涉及边长问题,从而可以考虑用向量来讨论这问题。(证法二):过点A作单位向量, 由向量的加法可得 则 CABj ,即同理,过点C作,可得 从而从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使

4、,;(2)等价于,思索:正弦定理的根本作用是什么?已知三角形的随意两角及其一边可以求其他边,如;已知三角形的随意两边与其中一边的对角可以求其他角的正弦值,如。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。例题分析例1在中,已知,cm,解三角形。解:依据三角形内角和定理,;依据正弦定理, ;依据正弦定理, 评述:对于解三角形中的困难运算可运用计算器。练习:在中,已知下列条件解三角形。(1), (2),例2 在中,已知cm,cm,解三角形(角度准确到,边长准确到1cm)。解:依据正弦定理, 因为,所以,或 当时, , 当时,应留意已知两边和其中一边的对角解三角形时,可能有两解的

5、情形。课堂练习第4页练习第2题。思索题:在ABC中,这个k与ABC有什么关系?三.课时小结(由学生归纳总结)(1)定理的表示形式:;或,(2)正弦定理的应用范围:已知两角和任一边,求其它两边及一角;已知两边和其中一边对角,求另一边的对角。四.课后作业:P10面1、2题。1.2解三角形应用举例 第一课时一、教学目的1、可以运用正弦定理、余弦定理等学问和方法解决一些有关测量间隔 的实际问题,理解常用的测量相关术语2、激发学生学习数学的爱好,并体会数学的应用价值;同时培育学生运用图形、数学符号表达题意和应用转化思想解决数学问题的实力二、教学重点、难点教学重点:由实际问题中抽象出一个或几个三角形,然后

6、逐个解决三角形,得到实际问题的解教学难点:依据题意建立数学模型,画出示意图三、教学设想1、复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、设置情境请学生答复完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不行及的月亮离我们地球原委有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的间隔 ,是什么奇妙的方法探究到这个奇妙的呢?我们知道,对于未知的间隔 、高度等,存在着很多可供选择的测量方案,比方可以应用全等三角形、相像三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能施行。如因为没有足够的空

7、间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今日我们开场学习正弦定理、余弦定理在科学理论中的重要应用,首先讨论如何测量间隔 。3、 新课讲授(1)解决实际测量问题的过程一般要充分仔细理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解(2)例1、如图,设A、B两点在河的两岸,要测量两点之间的间隔 ,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的间隔 是55m,BAC=,ACB=。求A、B两点的间隔 (准确到0.1m)提问1:ABC中,依据已知的边和对应角,运用哪个定理比拟

8、适当?提问2:运用该定理解题还须要那些边和角呢?请学生答复。分析:这是一道关于测量从一个可到达的点到一个不行到达的点之间的间隔 的问题,题目条件告知了边AB的对角,AC为已知边,再依据三角形的内角和定理很简洁依据两个已知角算出AC的对角,应用正弦定理算出AB边。解:依据正弦定理,得 = AB = = = = 65.7(m)答:A、B两点间的间隔 为65.7米变式练习:两灯塔A、B与海洋视察站C的间隔 都等于a km,灯塔A在视察站C的北偏东30,灯塔B在视察站C南偏东60,则A、B之间的间隔 为多少?教师指导学生画图,建立数学模型。 解略:a km例2、如图,A、B两点都在河的对岸(不行到达)

9、,设计一种测量A、B两点间间隔 的方法。分析:这是例1的变式题,讨论的是两个不行到达的点之间的间隔 测量问题。首先须要构造三角形,所以须要确定C、D两点。依据正弦定理中已知三角形的随意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的间隔 。解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=,ACD=,CDB=,BDA =,在ADC和BDC中,应用正弦定理得 AC = = BC = = 计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的间隔 AB = 分组讨论:还没有其它的方法呢?师生一起对不同方法进展比照、分

10、析。变式训练:若在河岸选取相距40米的C、D两点,测得BCA=60,ACD=30,CDB=45,BDA =60略解:将题中各已知量代入例2推出的公式,得AB=20评注:可见,在讨论三角形时,敏捷依据两个定理可以找寻到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。4、 学生阅读课本4页,理解测量中基线的概念,并找到生活中的相应例子。5、 课堂练习:课本第14页练习第1、2题6、 归纳总结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:依据已知条件与求解目的,把已知量与求解量尽量集

11、中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解四、课后作业1、 课本第22页第1、2、3题2、 思索题:某人在M汽车站的北偏西20的方向上的A处,视察到点C处有一辆汽车沿马路向M站行驶。马路的走向是M站的北偏东40。开场时,汽车到A的间隔 为31千米,汽车前进20千米后,到A的间隔 缩短了10千米。问汽车还需行驶多远,才能到达M汽车站?解:由题设,画出示意图,设汽车前进20千米后到达B处。在ABC中,AC=31,BC=20,AB=21,由余弦定理得cosC=,

12、则sinC =1- cosC =, sinC =,所以 sinMAC = sin(120-C)= sin120cosC - cos120sinC =在MAC中,由正弦定理得 MC =35从而有MB= MC-BC=15答:汽车还须要行驶15千米才能到达M汽车站。作业:习案作业三1.2 解三角形应用举例 第二课时一、教学目的1、可以运用正弦定理、余弦定理等学问和方法解决一些有关底部不行到达的物体高度测量的问题2、稳固深化解三角形实际问题的一般方法,养成良好的讨论、探究习惯。3、进一步培育学生学习数学、应用数学的意识及视察、归纳、类比、概括的实力二、教学重点、难点重点:结合实际测量工具,解决生活中的

13、测量高度问题难点:能视察较困难的图形,从中找到解决问题的关键条件三、教学过程.课题导入提问:现实生活中,人们是怎样测量底部不行到达的建筑物高度呢?又怎样在程度飞行的飞机上测量飞机下方山顶的海拔高度呢?今日我们就来共同讨论这方面的问题.讲授新课范例讲解例1、AB是底部B不行到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的间隔 CA,再测出由C点视察A的仰角,就可以计算出AE的长。解:选择一条程度基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD = a,测角仪

14、器的高是h,那么,在ACD中,依据正弦定理可得AC = AB = AE + h=AC+ h= + h例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC局部的高为27.3 m,求出山高CD(准确到1 m)师:依据已知条件,大家能设计出解题方案吗?若在ABD中求CD,则关键须要求出哪条边呢?生:需求出BD边。师:那如何求BD边呢?生:可首先求出AB边,再依据BAD=求得。解:在ABC中, BCA=90+,ABC =90-,BAC=- ,BAD =.依据正弦定理, = 所以 AB = 在RtABD中,得 BD =ABsinBAD=将测量数据代入上式

15、,得BD = =177 (m)CD =BD -BC177-27.3=150(m)答:山的高度约为150米.思索:有没有别的解法呢?若在ACD中求CD,可先求出AC。思索如何求出AC?例3、如图,一辆汽车在一条程度的马路上向正东行驶,到A处时测得马路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.思索1:欲求出CD,大家思索在哪个三角形中讨论比拟合适呢? (在BCD中)思索2:在BCD中,已知BD或BC都可求出CD,依据条件,易计算出哪条边的长? (BC边)解:在ABC中, A=15,C= 25-15=10,依据正弦定理,

16、= , BC = 7.4524(km) CD=BCtanDBCBCtan81047(m)答:山的高度约为1047米.课堂练习:课本第17页练习第1、2、3题.课时小结利用正弦定理和余弦定理来解题时,要学会审题及依据题意画方位图,要懂得从所给的背景资料中进展加工、抽取主要因素,进展适当的简化。.课后作业1、 作业:习案作业五1.2解三角形应用举例 第三课时一、教学目的1、可以运用正弦定理、余弦定理等学问和方法解决一些有关计算角度的实际问题2、通过综合训练强化学生的相应实力,让学生有效、主动、主动地参加到探究问题的过程中来,逐步让学生自主发觉规律,举一反三。3、培育学生提出问题、正确分析问题、独立

17、解决问题的实力,并激发学生的探究精神。二、教学重点、难点重点:能依据正弦定理、余弦定理的特点找到已知条件和所求角的关系难点:敏捷运用正弦定理和余弦定理解关于角度的问题三、教学过程.课题导入创设情境提问:前面我们学习了如何测量间隔 和高度,这些事实上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持肯定的航速和航向呢?今日我们接着讨论这方面的测量问题。.讲授新课范例讲解例1、如图,一艘海轮从A动身,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B动身,沿北偏东32的方向航行54.0 n mi

18、le后到达海岛C.假如下次航行干脆从A动身到达C,此船应当沿怎样的方向航行,须要航行多少间隔 (角度准确到0.1,间隔 准确到0.01n mile)学生看图思索并讲解并描述解题思路分析:首先依据三角形的内角和定理求出AC边所对的角ABC,即可用余弦定理算出AC边,再依据正弦定理算出AC边和AB边的夹角CAB。解:在ABC中,ABC=180- 75+ 32=137,依据余弦定理,AC= = 113.15依据正弦定理, = sinCAB = = 0.3255, 所以 CAB =19.0, 75- CAB =56.0答:此船应当沿北偏东56.1的方向航行,须要航行113.15n mile例2、在某点

19、B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再接着前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。解法一:(用正弦定理求解)由已知可得在ACD中, AC=BC=30, AD=DC=10, ADC =180-4, = 。 因为 sin4=2sin2cos2cos2=,得 2=30 =15, 在RtADE中,AE=ADsin60=15答:所求角为15,建筑物高度为15m解法二:(设方程来求解)设DE= x,AE=h 在 RtACE中,(10+ x) + h=30 在 RtADE中,x+h=(10) 两式相减,得x=5,h=15 在 Rt

20、ACE中,tan2=2=30,=15 答:所求角为15,建筑物高度为15m解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得BAC=, CAD=2, AC = BC =30m , AD = CD =10m在RtACE中,sin2=- 在RtADE中,sin4=, - 得 cos2=,2=30,=15,AE=ADsin60=15答:所求角为15,建筑物高度为15m例3、某巡逻艇在A处发觉北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇马上以14海里/小时的速度沿着直线方向追去,问巡逻艇应当沿什么方向去追?须要多少时间才追逐上该走私船?

21、师:你能依据题意画出方位图?教师启发学生做图建立数学模型分析:这道题的关键是计算出三角形的各边,即须要引入时间这个参变量。解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x, AB=14x,AC=9,ACB=+= (14x) = 9+ (10x) -2910xcos化简得32x-30x-27=0,即x=,或x=-(舍去)所以BC = 10x =15,AB =14x =21,又因为sinBAC =BAC =38,或BAC =141(钝角不合题意,舍去),38+=83答:巡逻艇应当沿北偏东83方向去追,经过1.4小时才追逐上该走私船.评注:在求解三角形中,我们可以依据正弦函

22、数的定义得到两个解,但作为有关现实生活的应用题,必需检验上述所求的解是否符合实际意义,从而得出实际问题的解.课堂练习课本第16页练习.课时小结解三角形的应用题时,通常会遇到两种状况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时须要选择条件足够的三角形优先讨论,再逐步在其余的三角形中求出问题的解。.课后作业 习案作业六1.2解三角形应用举例 第四课时一、教学目的1、可以运用正弦定理、余弦定理等学问和方法进一步解决有关三角形的问题, 驾驭三角形的面积公式的简洁推导和应用2、本节课补充了三角形新的面积公式,奇妙设疑,引导学

23、生证明,同时总结出该公式的特点,按部就班地详细运用于相关的题型。另外本节课的证明题表达了前面所学学问的生动运用,教师要放手让学生探索,使学生在详细的论证中敏捷把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行驾驭了两定理的特点,就能很快开阔思维,有利地进一步打破难点。3、让学生进一步稳固所学的学问,加深对所学定理的理解,进步创新实力;进一步培育学生讨论和发觉实力,让学生在探究中体验愉悦的胜利体验二、教学重点、难点重点:推导三角形的面积公式并解决简洁的相关题目难点:利用正弦定理、余弦定理来求证简洁的证明题三、教学过程.课题导入创设情境师:以前我们就已经接触过了三角形的面积公式,今日

24、我们来学习它的另一个表达公式。在ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?生:h=bsinC=csinB h=csinA=asinC h=asinB=bsinaA师:依据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?生:同理可得,S=bcsinA, S=acsinB.讲授新课范例讲解例1、在ABC中,依据下列条件,求三角形的面积S(准确到0.1cm)(1)已知a=14 cm, c=24 cm, B=150;(2)已知B=60, C=45, b=

25、4 cm;(3)已知三边的长分别为a=3 cm,b=4 cm, c=6 cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有亲密的关系,我们可以应用解三角形面积的学问,视察已知什么,尚缺什么?求出须要的元素,就可以求出三角形的面积。解:略例2、如图,在某市进展城市环境建立中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(准确到0.1cm)?思索:你能把这一实际问题化归为一道数学题目吗?本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。解:设a=68m,b=88m,c=127

26、m,依据余弦定理的推论,cosB= =0.7532sinB=0.6578 应用S=acsinB S 681270.65782840.38(m)答:这个区域的面积是2840.38m。变式练习1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面积S提示:解有关已知两边和其中一边对角的问题,留意分状况讨论解的个数。答案:a=6,S=9;a=12,S=18例3、在ABC中,求证:(1)(2)+=2(bccosA+cacosB+abcosC)分析:这是一道关于三角形边角关系恒等式的证明问题,视察式子左右两边的特点,用正弦定理来证明证明:(1)依据正弦定理,可设 = = = k 明显 k0,所以

27、 左边=右边(2)依据余弦定理的推论, 右边=2(bc+ca+ab) =(b+c- a)+(c+a-b)+(a+b-c) =a+b+c=左边变式练习2:推断满意sinC =条件的三角形形态提示:利用正弦定理或余弦定理,“化边为角”或“化角为边” (解略)直角三角形.课堂练习 课本第18页练习第1、2、3题.课时小结利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形态。特殊是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。.课后作业 习案作业七21数列的概念与简洁表示法(一)一、教学要求:理解数列及其有关概念;理解数列和函

28、数之间的关系;理解数列的通项公式,并会用通项公式写出数列的随意一项;对于比拟简洁的数列,会依据其前几项的特征写出它的一个通项公式.二、教学重点、教学难点:重点:数列及其有关概念,通项公式及其应用.难点:依据一些数列的前几项,抽象、归纳出数列的通项公式.三、教学过程:导入新课 “有人说,大自然是懂数学的”“树木的,。”, (一)、复习打算:1. 在必修课本中,我们在讲利用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺之棰,日取其半,万世不竭”,即假如将初始量看成“1”,取其一半剩“”,再取一半还剩“”,、,如此下去,即得到1,、2. 生活中的三角形数、正方形数. 阅读教材提问:这些数有什

29、么规律?与它所表示的图形的序号有什么关系?(二)、讲授新课:1. 教学数列及其有关概念:(1)三角形数:1,3,6,10,(2)正方形数:1,4,9,16,(2)1,2,3,4的倒数排列成的一列数:(3)-1的1次幂,2次幂,3次幂,排列成一列数:-1,1,-1,1,-1,。(4)无穷多个1排列成的一列数:1,1,1,1,。有什么共同特点? 1. 都是一列数;2. 都有肯定的依次 数列的概念:依据肯定依次排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢? -数列的有序性(2)

30、数列中的数可以重复吗?(3)数列与集合有什么区分?集合讲究:无序性、互异性、确定性,数列讲究:有序性、可重复性、确定性。 数列中每一个数叫数列的项,排在第一位的数称为这个数列的第1项(或首项),排在第二位的数称为这个数列的第2项、排在第位的数称为这个数列的第项. 数列的一般形式可以写成,简记为. 数列的分类:(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摇摆数列. 数列中的数与它的序号有怎样的关系? 序号可以看作自变量,数列中的数可以看作随着变动的量。把数列看作函数。 即:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对

31、应的一列函数值。反过来,对于函数,假如有意义,可以得到一个数列: 假如数列的第n项与项数之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。函数数列(特殊的函数)定义域R或R的子集或它的子集解析式图象点的集合一些离散的点的集合2应用举例例1、写出下列数列的一个通项公式,使它的前4项分别是下列各数: (1) (2) 2,0,2,0练习:依据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 7, 9, 11,; (2) , , , , , ;(3) 0, 1, 0, 1, 0, 1,; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ;(5) 2,

32、6, 18, 54, 162, .例2. 写出数列的一个通项公式,并推断它的增减性。思索:是不是全部的数列都存在通项公式?依据数列的前几项写出的通项公式是唯一的吗?例3依据下面数列的通项公式,写出前五项:(1) (2)例4求数列中的最大项。例5已知数列的通项公式为,求是这个数列的第几项?三. 小结:数列及其根本概念,数列通项公式及其应用.四、稳固练习:1. 练习:P31面1、2、题、2. 作业:习案九。2.1 数列的概念与简洁表示法(二)教学要求:理解数列的递推公式,明确递推公式与通项公式的异同;会依据数列的递推公式写出数列的前几项;理解数列的前n项和与的关系.教学重点:依据数列的递推公式写出

33、数列的前几项.教学难点:理解递推公式与通项公式的关系.教学过程:一、复习:1).以下四个数中,是数列中的一项的是 ( A )A.380 B.39 C.32 D.182).设数列为则是该数列的 ( C )A.第9项 B. 第10项 C. 第11项 D. 第12项 3).数列的一个通项公式为4)、图2.1-5中的三角形称为希尔宾斯基(Sierpinski)三角形。在下图4个三角形中,着色三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图象。二、探究新知(一)、视察以下数列,并写出其通项公式: 思 考: 除了用通项公式外,还有什么方法可以确定这些数列的每一

34、项?(二)定义:已知数列的第一项(或前几项),且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式.练习: 运用递推公式确定一个数列的通项: 例1:已知数列的第一项是1,以后的各项由公式给出,写出这个数列的前五项解:练习: 已知数列的前n项和为:求数列的通项公式.例2.已知,求.解法一: - 视察法解法二: -累加法例3:已知,求.解法一: 解法二: -迭乘法 三、课堂小结: 1.递推公式的概念;2.递推公式与数列的通项公式的区分是:(1)通项公式反映的是项与项数之间的关系,而递推公式反映的是相临两项(或n项)之间的关系.(2)对于通项公式,只要将公式

35、中的n依次取即可得到相应的项,而递推公式则要已知首项(或前n项),才可依次求出其他项.3用递推公式求通项公式的方法:视察法、累加法、迭乘法.四、作业1.阅读教材P30-33面2. 习案作业十22 等差数列(一)一、教学目的1学问与技能:通过实例,理解等差数列的概念;探究并驾驭等差数列的通项公式;能在详细的问题情境中,发觉数列的等差关系并能用有关学问解决相应的问题; 2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过视察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关学问解决一些简洁的问题,进展等差数列通项公式应用的理论操作并在操作过程中二、教学重、难点重点:理解等差数

36、列的概念及其性质,探究并驾驭等差数列的通项公式; 难点:概括通项公式推导过程中表达出的数学思想方法。三、教学设想创设情景 上节课我们学习了数列。在日常生活中,人口增长、教化贷款、存款利息等等这些大家以后会接触得比拟多的实际计算问题,都须要用到有关数列的学问来解决。今日我们先学习一类特殊的数列。探究讨论 由学生视察分析并得出答案:(放投影片)1、在现实生活中,我们常常这样数数,从0开场,每隔5数一次,可以得到数列:0,5,_,_,_,_,2、2000年,在澳大利亚悉尼实行的奥运会上,女子举重被正式列为竞赛工程。该工程共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58

37、,63。3、水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。假如一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开场放水算起,到可以进展清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.54、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息参加本金计算下一期的利息。依据单利计算本利和的公式是:本利和=本金(1+利率寸期).例如,按活期存入10 000元钱,年利率是0.72%。那么依据单利,5年内各年末的本利和分别是:时间年初本金(元)年末本利和(元)第1年10 00010 072第2年1

38、0 00010 144第3年10 00010 216第4年10 00010 288第5年10 00010 360各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360。思索:同学们视察一下上面的这四个数列:0,5,10,15,20, 48,53,58,63 18,15.5,13,10.5,8,5.5 10 072,10 144,10 216, 10 288,10 360 看这些数列有什么共同特点呢?引导学生视察相邻两项间的关系, 由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个

39、常数的特点)。 等差数列的概念等差数列:一般地,假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,72。留意:公差d肯定是由后项减前项所得,而不能用前项减后项来求;对于数列 ,若 =d (d是与n无关的数或字母),n2,nN ,则此数列是等差数列,d 为公差;(3)若d=0, 则该数列为常数列提问:(1)你能举一些生活中的等差数列的例子吗?(2)假如在与中间插入一个数A,使,A,成等差数列数列,那么A应满意什么条件?由学生答复:因为a,A,b组成

40、了一个等差数列,那么由定义可以知道:A-a=b-A 所以就有 由三个数a,A,b组成的等差数列可以看成最简洁的等差数列,这时,A叫做a与b的等差中项。不难发觉,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。如数列:1,3,5,7,9,11,13中 ,5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,从而可得在一等差数列中,若m+n=p+q 则 等差数列的通项公式提问:对于以上的等差数列,我们能不能用通项公式将它们表示出来呢? 、我们是通过讨论数列的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们依

41、据通项公式的定义,写出这四组等差数列的通项公式。由学生经过分析写出通项公式: 猜测得到这个数列的通项公式是 猜测得到这个数列的通项公式是 猜测得到这个数列的通项公式是 猜测得到这个数列的通项公式是、那么,假如随意给了一个等差数列的首项和公差d,它的通项公式是什么呢? 引导学生依据等差数列的定义进展归纳: (n-1)个等式 所以 思索:那么通项公式究竟如何表达呢? 得出通项公式:以为首项,d为公差的等差数列的通项公式为: 也就是说,只要我们知道了等差数列的首项和公差d,那么这个等差数列的通项就可以表示出来了。选讲:除此之外,还可以用迭加法和迭代法推导等差数列的通项公式:(迭加法): 是等差数列, (迭代法):是等差数列,则有 所以

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁