《2023年高中数学新人教版必修5全套教案.doc》由会员分享,可在线阅读,更多相关《2023年高中数学新人教版必修5全套教案.doc(74页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、111正弦定理教学目的知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观测,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。情感态度与价值观:培养学生在方程思想指导下解决解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。教学重点正弦定理的探索和证明及其基本应用。教学难点已知两边和其中
2、一边的对角解三角形时判断解的个数。教学过程一.课题导入BCA如图11-1,固定ABC的边CB及B,使边AC绕着顶点C转动。 思考:C的大小与它的对边AB的长度之间有如何的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系精确地表达出来? 二.讲授新课探索研究 在初中,我们已学过如何解直角三角形,下面就一方面来探讨直角三角形中,角与边的等式关系。如图,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,CAB有,又, 则 从而在直角三角形ABC中, 思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐
3、角三角形和钝角三角形两种情况:如图11-3,(1)当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, C同理可得, b a从而 A c B(2)当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)思考2:尚有其方法吗? 由于涉及边长问题,从而可以考虑用向量来研究这问题。(证法二):过点A作单位向量, 由向量的加法可得 则 CABj ,即同理,过点C作,可得 从而从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k
4、使,;(2)等价于,思考:正弦定理的基本作用是什么?已知三角形的任意两角及其一边可以求其他边,如;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。例题分析例1在中,已知,cm,解三角形。解:根据三角形内角和定理,;根据正弦定理, ;根据正弦定理, 评述:对于解三角形中的复杂运算可使用计算器。练习:在中,已知下列条件解三角形。(1), (2),例2 在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。解:根据正弦定理, 由于,所以,或 当时, , 当时,应注意已知两边和其中一边的对角解三角形时,也许有两解
5、的情形。课堂练习第4页练习第2题。思考题:在ABC中,这个k与ABC有什么关系?三.课时小结(由学生归纳总结)(1)定理的表达形式:;或,(2)正弦定理的应用范围:已知两角和任一边,求其它两边及一角;已知两边和其中一边对角,求另一边的对角。四.课后作业:P10面1、2题。1.2解三角形应用举例 第一课时一、教学目的1、可以运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语2、激发学生学习数学的爱好,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二、教学重点、难点教学重点:由实际问题中抽象出一个或几个三角形,然后
6、逐个解决三角形,得到实际问题的解教学难点:根据题意建立数学模型,画出示意图三、教学设想1、复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、设立情境请学生回答完后再提问:前面引言第一章“解三角形”中,我们碰到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实行。如由于没有足够的空间,
7、不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,一方面研究如何测量距离。新课讲授(1)解决实际测量问题的过程一般要充足认真理解题意,对的做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解(2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=,ACB=。求A、B两点的距离(精确到0.1m)提问1:ABC中,根据已知的边和相应角,运用哪个定理比较适当?提问2:运
8、用该定理解题还需要那些边和角呢?请学生回答。分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。解:根据正弦定理,得 = AB = = = = 65.7(m)答:A、B两点间的距离为65.7米变式练习:两灯塔A、B与海洋观测站C的距离都等于a km,灯塔A在观测站C的北偏东30,灯塔B在观测站C南偏东60,则A、B之间的距离为多少?老师指导学生画图,建立数学模型。 解略:a km例2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点
9、间距离的方法。分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。一方面需要构造三角形,所以需要拟定C、D两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再运用余弦定理可以计算出AB的距离。解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=,ACD=,CDB=,BDA =,在ADC和BDC中,应用正弦定理得 AC = = BC = = 计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离 AB = 分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。变式训练:若在河岸选取相
10、距40米的C、D两点,测得BCA=60,ACD=30,CDB=45,BDA =60略解:将题中各已知量代入例2推出的公式,得AB=20评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最重要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。课堂练习:课本第14页练习第1、2题归纳总结解斜三角形应用题的一般环节:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目的,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模
11、型(3)求解:运用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检查:检查上述所求的解是否符合实际意义,从而得出实际问题的解四、课后作业课本第22页第1、2、3题思考题:某人在M汽车站的北偏西20的方向上的A处,观测到点C处有一辆汽车沿公路向M站行驶。公路的走向是M站的北偏东40。开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米。问汽车还需行驶多远,才干到达M汽车站?解:由题设,画出示意图,设汽车前进20千米后到达B处。在ABC中,AC=31,BC=20,AB=21,由余弦定理得cosC=,则sinC =1- cosC =, sinC =,所以 sin
12、MAC = sin(120-C)= sin120cosC - cos120sinC =在MAC中,由正弦定理得 MC =35从而有MB= MC-BC=15答:汽车还需要行驶15千米才干到达M汽车站。作业:习案作业三1.2 解三角形应用举例 第二课时一、教学目的1、可以运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。3、进一步培养学生学习数学、应用数学的意识及观测、归纳、类比、概括的能力二、教学重点、难点重点:结合实际测量工具,解决生活中的测量高度问题难点:能观测较复杂的图形,从中找到解决问题的关键条
13、件三、教学过程.课题导入提问:现实生活中,人们是如何测量底部不可到达的建筑物高度呢?又如何在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题.讲授新课范例讲解例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观测A的仰角,就可以计算出AE的长。解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD = a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得AC = AB =
14、 AE + h=AC+ h= + h例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)师:根据已知条件,大家能设计出解题方案吗?若在ABD中求CD,则关键需规定出哪条边呢?生:需求出BD边。师:那如何求BD边呢?生:可一方面求出AB边,再根据BAD=求得。解:在ABC中, BCA=90+,ABC =90-,BAC=- ,BAD =.根据正弦定理, = 所以 AB = 在RtABD中,得 BD =ABsinBAD=将测量数据代入上式,得BD = =177 (m)CD =BD -BC177-27
15、.3=150(m)答:山的高度约为150米.思考:有没有别的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.思考1:欲求出CD,大家思考在哪个三角形中研究比较适合呢? (在BCD中)思考2:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长? (BC边)解:在ABC中, A=15,C= 25-15=10,根据正弦定理, = , BC = 7.4524(km) CD=BCtanDBC
16、BCtan81047(m)答:山的高度约为1047米.课堂练习:课本第17页练习第1、2、3题.课时小结运用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取重要因素,进行适当的简化。.课后作业作业:习案作业五1.2解三角形应用举例 第三课时一、教学目的1、可以运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题2、通过综合训练强化学生的相应能力,让学生有效、积极、积极地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。3、培养学生提出问题、对的分析问题、独立解决问题的能力,并激发学生的探索精神。二、教学重点、难点重点:能根据
17、正弦定理、余弦定理的特点找到已知条件和所求角的关系难点:灵活运用正弦定理和余弦定理解关于角度的问题三、教学过程.课题导入创设情境提问:前面我们学习了如何测量距离和高度,这些事实上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会碰到新的问题,在浩瀚无垠的海面上如何保证轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。.讲授新课范例讲解例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达成海岛C.假如下次航行直接从A出发到达C,此船应当沿如何的方向
18、航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)学生看图思考并讲述解题思绪分析:一方面根据三角形的内角和定理求出AC边所对的角ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角CAB。解:在ABC中,ABC=180- 75+ 32=137,根据余弦定理,AC= = 113.15根据正弦定理, = sinCAB = = 0.3255, 所以 CAB =19.0, 75- CAB =56.0答:此船应当沿北偏东56.1的方向航行,需要航行113.15n mile例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A
19、的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。解法一:(用正弦定理求解)由已知可得在ACD中, AC=BC=30, AD=DC=10, ADC =180-4, = 。 由于 sin4=2sin2cos2cos2=,得 2=30 =15, 在RtADE中,AE=ADsin60=15答:所求角为15,建筑物高度为15m解法二:(设方程来求解)设DE= x,AE=h 在 RtACE中,(10+ x) + h=30 在 RtADE中,x+h=(10) 两式相减,得x=5,h=15 在 RtACE中,tan2=2=30,=15 答:所求角为15,建筑物高度为15m解
20、法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得BAC=, CAD=2, AC = BC =30m , AD = CD =10m在RtACE中,sin2=- 在RtADE中,sin4=, - 得 cos2=,2=30,=15,AE=ADsin60=15答:所求角为15,建筑物高度为15m例3、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应当沿什么方向去追?需要多少时间才追赶上该走私船?师:你能根据题意画出方位图?教师启发学生做图建立数学模型分析:这道题的关键是
21、计算出三角形的各边,即需要引入时间这个参变量。解:如图,设该巡逻艇沿AB方向通过x小时后在B处追上走私船,则CB=10x, AB=14x,AC=9,ACB=+= (14x) = 9+ (10x) -2910xcos化简得32x-30x-27=0,即x=,或x=-(舍去)所以BC = 10x =15,AB =14x =21,又由于sinBAC =BAC =38,或BAC =141(钝角不合题意,舍去),38+=83答:巡逻艇应当沿北偏东83方向去追,通过1.4小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检查上述所求的解是否符合
22、实际意义,从而得出实际问题的解.课堂练习课本第16页练习.课时小结解三角形的应用题时,通常会碰到两种情况:(1)已知量与未知量所有集中在一个三角形中,依次运用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。.课后作业 习案作业六1.2解三角形应用举例 第四课时一、教学目的1、可以运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简朴推导和应用2、本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。此外本节课的
23、证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能不久开阔思维,有利地进一步突破难点。3、让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验二、教学重点、难点重点:推导三角形的面积公式并解决简朴的相关题目难点:运用正弦定理、余弦定理来求证简朴的证明题三、教学过程.课题导入创设情境师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在ABC中,边BC、CA、AB上的高分别记为h
24、、h、h,那么它们如何用已知边和角表达?生:h=bsinC=csinB h=csinA=asinC h=asinB=bsinaA师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?生:同理可得,S=bcsinA, S=acsinB.讲授新课范例讲解例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)(1)已知a=14 cm, c=24 cm, B=150;(2)已知B=60, C=45, b=4 cm;(3)已知三边的长分别为a=3 cm,b=4 cm, c=6 cm
25、分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观测已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。解:略例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改导致室内公园,通过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm)?思考:你能把这一实际问题化归为一道数学题目吗?本题可转化为已知三角形的三边,求角的问题,再运用三角形的面积公式求解。解:设a=68m,b=88m,c=127m,根据余弦定理的推论,cosB= =0.7532sinB=0.6578 应
26、用S=acsinB S 681270.65782840.38(m)答:这个区域的面积是2840.38m。变式练习1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面积S提醒:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。答案:a=6,S=9;a=12,S=18例3、在ABC中,求证:(1)(2)+=2(bccosA+cacosB+abcosC)分析:这是一道关于三角形边角关系恒等式的证明问题,观测式子左右两边的特点,用正弦定理来证明证明:(1)根据正弦定理,可设 = = = k 显然 k0,所以 左边=右边(2)根据余弦定理的推论, 右边=2(bc+ca+ab) =(b
27、+c- a)+(c+a-b)+(a+b-c) =a+b+c=左边变式练习2:判断满足sinC =条件的三角形形状提醒:运用正弦定理或余弦定理,“化边为角”或“化角为边” (解略)直角三角形.课堂练习 课本第18页练习第1、2、3题.课时小结运用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而拟定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。.课后作业 习案作业七21数列的概念与简朴表达法(一)一、教学规定:理解数列及其有关概念;了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较
28、简朴的数列,会根据其前几项的特性写出它的一个通项公式.二、教学重点、教学难点:重点:数列及其有关概念,通项公式及其应用.难点:根据一些数列的前几项,抽象、归纳出数列的通项公式.三、教学过程:导入新课 “有人说,大自然是懂数学的”“树木的,。”, (一)、复习准备:1. 在必修课本中,我们在讲运用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺之棰,日取其半,万世不竭”,即假如将初始量当作“1”,取其一半剩“”,再取一半还剩“”,、,如此下去,即得到1,、2. 生活中的三角形数、正方形数. 阅读教材提问:这些数有什么规律?与它所表达的图形的序号有什么关系?(二)、讲授新课:1. 教学数列及
29、其有关概念:(1)三角形数:1,3,6,10,(2)正方形数:1,4,9,16,(2)1,2,3,4的倒数排列成的一列数:(3)-1的1次幂,2次幂,3次幂,排列成一列数:-1,1,-1,1,-1,。(4)无穷多个1排列成的一列数:1,1,1,1,。有什么共同特点? 1. 都是一列数;2. 都有一定的顺序 数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢? -数列的有序性(2)数列中的数可以反复吗?(3)数列与集合有什么区别?集合讲究:无序性、互异性、
30、拟定性,数列讲究:有序性、可反复性、拟定性。 数列中每一个数叫数列的项,排在第一位的数称为这个数列的第1项(或首项),排在第二位的数称为这个数列的第2项、排在第位的数称为这个数列的第项. 数列的一般形式可以写成,简记为. 数列的分类:(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列. 数列中的数与它的序号有如何的关系? 序号可以看作自变量,数列中的数可以看作随着变动的量。把数列看作函数。 即:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值相应的一列函数值。反过来,对于函数,假如故意义,可以得到一个数列: 假如数列的
31、第n项与项数之间的关系可以用一个公式来表达,那么这个公式就叫做这个数列的通项公式。函数数列(特殊的函数)定义域R或R的子集或它的子集解析式图象点的集合一些离散的点的集合2应用举例例1、写出下列数列的一个通项公式,使它的前4项分别是下列各数: (1) (2) 2,0,2,0练习:根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 7, 9, 11,; (2) , , , , , ;(3) 0, 1, 0, 1, 0, 1,; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ;(5) 2, 6, 18, 54, 162, .例2. 写出数列的一个通项公式,并判断它的
32、增减性。思考:是不是所有的数列都存在通项公式?根据数列的前几项写出的通项公式是唯一的吗?例3根据下面数列的通项公式,写出前五项:(1) (2)例4求数列中的最大项。例5已知数列的通项公式为,求是这个数列的第几项?三. 小结:数列及其基本概念,数列通项公式及其应用.四、巩固练习:1. 练习:P31面1、2、题、2. 作业:习案九。2.1 数列的概念与简朴表达法(二)教学规定:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n项和与的关系.教学重点:根据数列的递推公式写出数列的前几项.教学难点:理解递推公式与通项公式的关系.教学过程:一、复习:1
33、).以下四个数中,是数列中的一项的是 ( A )A.380 B.39 C.32 D.182).设数列为则是该数列的 ( C )A.第9项 B. 第10项 C. 第11项 D. 第12项 3).数列的一个通项公式为4)、图2.1-5中的三角形称为希尔宾斯基(Sierpinski)三角形。在下图4个三角形中,着色三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图象。二、探究新知(一)、观测以下数列,并写出其通项公式: 思 考: 除了用通项公式外,尚有什么办法可以拟定这些数列的每一项?(二)定义:已知数列的第一项(或前几项),且任一项与它的前一项(或前几项
34、)间的关系可以用一个公式来表达,这个公式就叫做这个数列的递推公式.练习: 运用递推公式拟定一个数列的通项: 例1:已知数列的第一项是1,以后的各项由公式给出,写出这个数列的前五项解:练习: 已知数列的前n项和为:求数列的通项公式.例2.已知,求.解法一: - 观测法解法二: -累加法例3:已知,求.解法一: 解法二: -迭乘法 三、课堂小结: 1.递推公式的概念;2.递推公式与数列的通项公式的区别是:(1)通项公式反映的是项与项数之间的关系,而递推公式反映的是相临两项(或n项)之间的关系.(2)对于通项公式,只要将公式中的n依次取即可得到相应的项,而递推公式则要已知首项(或前n项),才可依次求
35、出其他项.3用递推公式求通项公式的方法:观测法、累加法、迭乘法.四、作业1.阅读教材P30-33面2. 习案作业十22 等差数列(一)一、教学目的1知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题; 2. 过程与方法:让学生对平常生活中实际问题分析,引导学生通过观测,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简朴的问题,进行等差数列通项公式应用的实践操作并在操作过程中二、教学重、难点重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式; 难点:概括通项公式推导过程
36、中体现出的数学思想方法。三、教学设想创设情景 上节课我们学习了数列。在平常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们先学习一类特殊的数列。探索研究 由学生观测分析并得出答案:(放投影片)1、在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,_,_,_,_,2、2023年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项目共设立了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。3、水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水
37、库的杂鱼。假如一个水库的水位为18cm,自然放水天天水位减少2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库天天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.54、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金(1+利率寸期).例如,按活期存入10 000元钱,年利率是0.72%。那么按照单利,5年内各年末的本利和分别是:时间年初本金(元)年末本利和(元)第1年10 00010 072第2年10 00010 144第3年10 00010 216第4年10 00010
38、288第5年10 00010 360各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360。思考:同学们观测一下上面的这四个数列:0,5,10,15,20, 48,53,58,63 18,15.5,13,10.5,8,5.5 10 072,10 144,10 216, 10 288,10 360 看这些数列有什么共同特点呢?引导学生观测相邻两项间的关系, 由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。 等差数列的概念等差数列:一般地,假如一个数列从第2项起,每一
39、项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表达。那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,72。注意:公差d一定是由后项减前项所得,而不能用前项减后项来求;对于数列 ,若 =d (d是与n无关的数或字母),n2,nN ,则此数列是等差数列,d 为公差;(3)若d=0, 则该数列为常数列提问:(1)你能举一些生活中的等差数列的例子吗?(2)假如在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?由学生回答:由于a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A 所以就有 由三个数a,A
40、,b组成的等差数列可以当作最简朴的等差数列,这时,A叫做a与b的等差中项。不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。如数列:1,3,5,7,9,11,13中 ,5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,从而可得在一等差数列中,若m+n=p+q 则 等差数列的通项公式提问:对于以上的等差数列,我们能不能用通项公式将它们表达出来呢? 、我们是通过研究数列的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这四组等差数列的通项公式。由学生通过度析写出通项公式: 猜想得到这个数列的通项公式是 猜想得到这个数列的通项公式是 猜想得到这个数列的通项公式是 猜想得到这个数列的通项公式是、那么,假如任意给了一个等差数列的首项和公差d,它的通项公式是什么呢? 引导学生根据等差数列的定义进行归纳: (n-1)个等式 所以 思考:那么通项公式到底如何表达呢? 得出通项公式:认为首项,d为公差的等差数列的通项公式为: 也就是说,只要我们知道了等差数列的首项和公差d,那么这个等差数列的通项就可以表达出来了。选讲:除此之外,还可以用迭加法和迭代法推导等差数列的通项公式:(迭加法): 是等差数列, (迭代法):是等差数列,则有 所以