《高中数学教材人教版知识点总结.docx》由会员分享,可在线阅读,更多相关《高中数学教材人教版知识点总结.docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学教材人教版学问点总结必修1第一章、集合及函数概念1.1.1、集合1、 把探讨的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、 只要构成两个集合的元素是一样的,就称这两个集合相等。3、 常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.4、集合的表示方法:列举法、描绘法.1.1.2、集合间的根本关系1、 一般地,对于两个集合A、B,假如集合A中随意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作.2、 假如集合,但存在元素,且,则称集合A是集合B的真子集.记作:AB.3、 把不含任何元素的集合叫做空集.记作:.并规定:空集合
2、是任何集合的子集.4、 假如集合A中含有n个元素,则集合A有个子集.1.1.3、集合间的根本运算1、 一般地,由全部属于集合A或集合B的元素组成的集合,称为集合A及B的并集.记作:.2、 一般地,由属于集合A且属于集合B的全部元素组成的集合,称为A及B的交集.记作:.3、全集、补集?运算类型交 集并 集补 集定 义由全部属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|xA,或xB)设S是一个集合,A是S的一个子集,由S中全部不属于A的元素组成
3、的集合,叫做S中子集A的补集(或余集)记作,即CSA=韦恩图示SA性 质AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 1.2.1、函数的概念1、 设A、B是非空的数集,假如依据某种确定的对应关系,使对于集合A中的随意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.2、 一个函数的构成要素为:定义域、对应关系、值域.假如两个函数的定义域一样,并且对应关系完全一样,则称这两个函数相等.1.2.2、函数的表示法1、 函数的
4、三种表示方法:解析法、图象法、列表法.1.3.1、单调性及最大(小)值单调性的定义:见书P281、 留意函数单调性证明的一般格式: 解:设且,则:=1.3.2、奇偶性1、 一般地,假如对于函数的定义域内随意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、 一般地,假如对于函数的定义域内随意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.第二章、根本初等函数()2.1.1、指数及指数幂的运算1、 一般地,假如,那么叫做 的次方根。其中.2、 当为奇数时,; 当为偶数时,.3、 我们规定: ; ;4、 运算性质: ; ; .2.1.2、指数函数及其性质1、 记住图象:相关性质
5、:2.2.1、对数及对数运算1、; 2、. 3、,.4、当时:; ; .5、换底公式:. 6、 .2.2.2、对数函数及其性质1、 记住图象:相关性质:2.3、幂函数1、几种幂函数的图象: 根本初等函数的图像和根本性质表1指数函数对数数函数定义域值域图象性质过定点过定点减函数增函数减函数增函数表2幂函数奇函数偶函数第一象限性质减函数增函数过定点第三章、函数的应用3.1.1、方程的根及函数的零点1、方程有实根函数的图象及轴有交点 函数有零点.2、 性质:假如函数在区间 上的图象是连绵不断的一条曲线,并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根.3.1.2、用二分法求方程的近
6、似解1、驾驭二分法.3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最终检验.必修2数学学问点1、空间几何体的构造常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。棱柱:有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都相互平行,由这些面所围成的多面体叫做棱柱。棱台:用一个平行于棱锥底面的平面去截棱锥,底面及截面之间的局部,这样的多面体叫做棱台。2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照耀下的投影叫平行投影,平行
7、投影的投影线是平行的。3、空间几何体的外表积及体积 圆柱侧面积; 圆锥侧面积: 圆台侧面积:体积公式:;球的外表积和体积: .第二章:点、直线、平面之间的位置关系1、公理1:假如一条直线上两点在一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。3、公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补。6、线线位置关系:平行、相交、异面。7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。8、面面位置关系:
8、平行、相交。9、线面平行:断定:平面外一条直线及此平面内的一条直线平行,则该直线及此平面平行。性质:一条直线及一个平面平行,则过这条直线的任一平面及此平面的交线及该直线平行。10、面面平行:断定:一个平面内的两条相交直线及另一个平面平行,则这两个平面平行。性质:假如两个平行平面同时和第三个平面相交,那么它们的交线平行。11、线面垂直:定义:假如一条直线垂直于一个平面内的随意一条直线,那么就说这条直线和这个平面垂直。断定:一条直线及一个平面内的两条相交直线都垂直,则该直线及此平面垂直。性质:垂直于同一个平面的两条直线平行。12、面面垂直:定义:两个平面相交,假如它们所成的二面角是直二面角,就说这
9、两个平面相互垂直。断定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。性质:两个平面相互垂直,则一个平面内垂直于交线的直线垂直于另一个平面。第三章:直线及方程1、倾斜角及斜率: 2、直线方程:点斜式: 斜截式: 两点式:一般式:3、对于直线:有:; 和相交; 和重合; .4、对于直线:有:; 和相交;和重合; .5、两点间间隔 公式:6、点到直线间隔 公式:第四章:圆及方程1、圆的方程:标准方程:一般方程:.2、两圆位置关系:外离:; 外切:; 相交:;内切:; 内含:.3、空间中两点间间隔 公式:必修3数学学问点第一章:算法1、算法三种语言:自然语言、流程图、程序语言;2、算法的三种根
10、本构造: 依次构造、选择构造、循环构造3、流程图中的图框:起止框、输入输出框、处理框、推断框、流程线等标准表示方法;4、循环构造中常见的两种构造: 当型循环构造、直到型循环构造5、根本算法语句:赋值语句:“=”(有时也用“”) 输入输出语句:“INPUT” “PRINT”条件语句:If Then Else End If循环语句: “Do”语句Do Until End“While”语句 While WEnd算法案例:辗转相除法同余思想第二章:统计1、抽样方法:简洁随机抽样(总体个数较少) 系统抽样(总体个数较多) 分层抽样(总体中差异明显)留意:在N个个体的总体中抽取出n个个体组成样本,每个个体
11、被抽到的时机(概率)均为。2、总体分布的估计:一表二图:频率分布表数据详实 频率分布直方图分布直观 频率分布折线图便于视察总体分布趋势注:总体分布的密度曲线及横轴围成的面积为1。茎叶图:茎叶图适用于数据较少的状况,从中便于看出数据的分布,以及中位数、众位数等。个位数为叶,十位数为茎,右侧数据依据从小到大书写,一样的药重复写。3、总体特征数的估计:平均数:;取值为的频率分别为,则其平均数为;留意:频率分布表计算平均数要取组中值。方差及标准差:一组样本数据方差:; 标准差:注:方差及标准差越小,说明样本数据越稳定。平均数反映数据总体程度;方差及标准差反映数据的稳定程度。线性回来方程变量之间的两类关
12、系:函数关系及相关关系; 制作散点图,推断线性相关关系线性回来方程:(最小二乘法)留意:线性回来直线经过定点。第三章:概率1、随机事务及其概率:事务:试验的每一种可能的结果,用大写英文字母表示;必定事务、不行能事务、随机事务的特点;随机事务A的概率:;2、古典概型:根本领件:一次试验中可能出现的每一个根本结果;古典概型的特点:全部的根本领件只有有限个; 每个根本领件都是等可能发生。古典概型概率计算公式:一次试验的等可能根本领件共有n个,事务A包含了其中的m个根本领件,则事务A发生的概率。3、几何概型:几何概型的特点:全部的根本领件是无限个; 每个根本领件都是等可能发生。几何概型概率计算公式:;
13、其中测度依据题目确定,一般为线段、角度、面积、体积等。4、互斥事务:不能同时发生的两个事务称为互斥事务;假如事务随意两个都是互斥事务,则称事务彼此互斥。假如事务A,B互斥,那么事务A+B发生的概率,等于事务A,B发生的概率的和,即:假如事务彼此互斥,则有:对立事务:两个互斥事务中必有一个要发生,则称这两个事务为对立事务。事务的对立事务记作对立事务肯定是互斥事务,互斥事务未必是对立事务。必修4数学学问点第一章、三角函数1.1.1、随意角1、 正角、负角、零角、象限角的概念.2、 及角终边一样的角的集合: .1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .3、弧长公
14、式:.4、扇形面积公式:.1.2.1、随意角的三角函数1、 设是一个随意角,它的终边及单位圆交于点,那么:.2、 设点为角终边上随意一点,那么:(设) ,.3、 ,在四个象限的符号和三角函数线的画法.4、 诱导公式一:(其中:)5、 特别角0,30,45,60,90,180,270的三角函数值.1.2.2、同角三角函数的根本关系式1、 平方关系:.2、 商数关系:.1.3、三角函数的诱导公式1、 诱导公式二:2、诱导公式三:3、诱导公式四:4、诱导公式五:5、诱导公式六:1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、 可以比照图象讲出正弦、余弦函数的相关性质:定义域、值域、最
15、大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、 会用五点法作图.1.4.2、正弦、余弦函数的性质1、 周期函数定义:对于函数,假如存在一个非零常数T,使得当取定义域内的每一个值时,都有 ,那么函数就叫做周期函数,非零常数T叫做这个函数的周期. 1.4.3、正切函数的图象及性质1、记住正切函数的图象:2、 可以比照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.1.5、函数的图象1、 可以讲出函数的图象和函数的图象之间的平移伸缩变换关系.2、 对于函数:有:振幅A,周期,初相,相位,频率.1.6、三角函数模型的简洁应用1、 要求熟识课本例题.第二章、平面对量
16、2.1.1、向量的物理背景及概念1、 理解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向一样或相反的非零向量叫做平行向量(或共线向量).规定:零向量及随意向量平行.2.1.3、相等向量及共线向量1、 长度相等且方向一样的向量叫做相等向量.2.2.1、向量加法运算及其几何意义1、 三角形法则和平行四边形法则. 2、 .2.2.2、向量减法运算及其几
17、何意义1、 及长度相等方向相反的向量叫做的相反向量.2.2.3、向量数乘运算及其几何意义1、 规定:实数及向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规定如下: , 当时, 的方向及的方向一样;当时, 的方向及的方向相反.2、 平面对量共线定理:向量及 共线,当且仅当有唯一一个实数,使.2.3.1、平面对量根本定理1、 平面对量根本定理:假如是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数,使.2.3.2、平面对量的正交分解及坐标表示1、 .2.3.3、平面对量的坐标运算1、 设,则: , , ,.2、 设,则:.2.3.4、平面对量共线的坐标表
18、示1、设,则线段AB中点坐标为,ABC的重心坐标为.2.4.1、平面对量数量积的物理背景及其含义1、 . 2、 在方向上的投影为:.3、 . 4、 . 5、 .2.4.2、平面对量数量积的坐标表示、模、夹角1、 设,则: 2、 设,则:.2.5.1、平面几何中的向量方法2.5.2、向量在物理中的应用举例第三章、三角恒等变换3.1.1、两角差的余弦公式1、2、记住15的三角函数值:3.1.2、两角和及差的正弦、余弦、正切公式1、 2、3、 4、.5、.3.1.3、二倍角的正弦、余弦、正切公式1、, 变形:.2、, 变形1:, 变形2:.3、.3.2、简洁的三角恒等变换1、 留意正切化弦、平方降次.必修5数学学问点第一章:解三角形1、正弦定理:.2、 余弦定理:3、三角形面积公式:第二章:数列1、数列中及之间的关系:2、等差数列:定义:假如一个数列从第2项起,每一项及它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。通项公式:求和公式:3、等比数列定义:假如一个数列从第2项起,每一项及它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。通项公式:求和公式:第三章:不等式1、2、3、变形: