《高中数学知识点大全.docx》由会员分享,可在线阅读,更多相关《高中数学知识点大全.docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学常用公式及常用结论1. 元素及集合的关系,.2.德摩根公式 .3.包含关系4.容斥原理. 5集合的子集个数共有 个;真子集有1个;非空子集有 1个;非空的真子集有2个.6.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.常有以下转化形式.在上有且只有一个实根,及不等价,前者是后者的一个必要而不是充分条件.特殊地, 方程有且只有一个实根在内,等价于,或且,或且.9.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处获得,详细如下:(1)当a0时,假设,那么;,.(2)当a0)1,那么的周期T=a;2,或,或,或,那么的周期T=2a;(3),那么
2、的周期T=3a;(4)且,那么的周期T=4a;(5),那么的周期T=5a;(6),那么的周期T=6a.30.分数指数幂 (1),且.(2),且.31根式的性质1.2当为奇数时,;当为偶数时,.32有理指数幂的运算性质(1) .(2) .(3).注: 假设a0,p是一个无理数,那么ap表示一个确定的实数上述有理指数幂的运算性质,对于无理数指数幂都适用. .34.对数的换底公式 (,且,且, ).推论 (,且,且, ).35对数的四那么运算法那么假设a0,a1,M0,N0,那么(1);(2) ;(3).函数,记.假设的定义域为,那么,且;假设的值域为,那么,且.对于的情形,须要单独检验.37. 对
3、数换底不等式及其推广 假设,那么函数 (1)当时,在和上为增函数., (2)当时,在和上为减函数.推论:设,且,那么1.2.38. 平均增长率的问题假如原来产值的根底数为N,平均增长率为,那么对于时间的总产值,有.39.数列的同项公式及前n项的和的关系( 数列的前n项的和为).40.等差数列的通项公式;其前n项和公式为.41.等比数列的通项公式;其前n项的和公式为或.42.等比差数列:的通项公式为;其前n项和公式为.43.分期付款(按揭贷款) 每次还款元(贷款元,次还清,每期利率为).44常见三角不等式1假设,那么.(2) 假设,那么.(3) .45.同角三角函数的根本关系式 ,=,.46.正
4、弦、余弦的诱导公式(n为偶数)(n为奇数)(n为偶数)(n为奇数) 47.和角及差角公式 ;.(平方正弦公式);.=(协助角所在象限由点的象限确定, ).48.二倍角公式 .49. 三倍角公式 .50.三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0,0)的周期;函数,(A,为常数,且A0,0)的周期.51.正弦定理.52.余弦定理;.53.面积定理1分别表示a、b、c边上的高.2.(3).54.三角形内角和定理 在ABC中,有.55. 简洁的三角方程的通解 . .特殊地,有. .56.最简洁的三角不等式及其解集 . . . .57.实数及向量的积的运算律设、为实数,那么(1)
5、结合律:(a)=()a;(2)第一安排律:(+)a=a+a;(3)第二安排律:(a+b)=a+b.58.向量的数量积的运算律:(1) ab= ba 交换律;(2)ab= ab=ab= ab;(3)a+bc= a c +bc.59.平面对量根本定理 假如e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2,使得a=1e1+2e2不共线的向量e1、e2叫做表示这一平面内全部向量的一组基底60向量平行的坐标表示 设a=,b=,且b0,那么ab(b0).53. a及b的数量积(或内积)ab=|a|b|cos 61. ab的几何意义数量积ab等于a的长度|a|及
6、b在a的方向上的投影|b|cos的乘积62.平面对量的坐标运算(1)设a=,b=,那么a+b=.(2)设a=,b=,那么a-b=. (3)设A,B,那么.(4)设a=,那么a=.(5)设a=,b=,那么ab=.63.两向量的夹角公式(a=,b=).64.平面两点间的间隔 公式 =(A,B).65.向量的平行及垂直 设a=,b=,且b0,那么A|bb=a .ab(a0)ab=0.66.线段的定比分公式 设,是线段的分点,是实数,且,那么.67.三角形的重心坐标公式 ABC三个顶点的坐标分别为、,那么ABC的重心的坐标是.68.点的平移公式 .注:图形F上的随意一点P(x,y)在平移后图形上的对应
7、点为,且的坐标为.69.“按向量平移的几个结论1点按向量a=平移后得到点.(2) 函数的图象按向量a=平移后得到图象,那么的函数解析式为.(3) 图象按向量a=平移后得到图象,假设的解析式,那么的函数解析式为.(4)曲线:按向量a=平移后得到图象,那么的方程为.(5) 向量m=按向量a=平移后得到的向量仍旧为m=.70. 三角形五“心向量形式的充要条件设为所在平面上一点,角所对边长分别为,那么1为的外心.2为的重心.3为的垂心.4为的内心.5为的的旁心.71.常用不等式:1(当且仅当ab时取“=号)2(当且仅当ab时取“=号)34柯西不等式5.72.极值定理都是正数,那么有1假设积是定值,那么
8、当时和有最小值;2假设和是定值,那么当时积有最大值.推广 ,那么有1假设积是定值,那么当最大时,最大;当最小时,最小.2假设和是定值,那么当最大时, 最小;当最小时, 最大.73.一元二次不等式,假如及同号,那么其解集在两根之外;假如及异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.;.74.含有肯定值的不等式 当a 0时,有.或.75.无理不等式1 .2.3.76.指数不等式及对数不等式 (1)当时,; .(2)当时,;77.斜率公式 、.78.直线的五种方程 1点斜式 (直线过点,且斜率为)2斜截式 (b为直线在y轴上的截距).3两点式 ()(、 ().(4)截距式 (分别
9、为直线的横、纵截距,)5一般式 (其中A、B不同时为0).平行和垂直 (1)假设,;.(2)假设,且A1、A2、B1、B2都不为零,;80.夹角公式 (1).(,,)(2).(,).直线时,直线l1及l2的夹角是.81. 到的角公式 (1).(,,)(2).(,).直线时,直线l1到l2的角是.82四种常用直线系方程 (1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中是待定的系数(3)平行直线系方程:直线中当斜率k肯定而b变动时,表示平行直线系方程及直线平行的直线
10、系方程是(),是参变量(4)垂直直线系方程:及直线 (A0,B0)垂直的直线系方程是,是参变量83.点到直线的间隔 (点,直线:).84. 或所表示的平面区域设直线,那么或所表示的平面区域是:假设,当及同号时,表示直线的上方的区域;当及异号时,表示直线的下方的区域.简言之,同号在上,异号在下.假设,当及同号时,表示直线的右方的区域;当及异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.85. 或所表示的平面区域设曲线,那么或所表示的平面区域是:所表示的平面区域上下两部分;所表示的平面区域上下两部分. 86. 圆的四种方程1圆的标准方程 .2圆的一般方程 (0).3圆的参数方程 .4圆
11、的直径式方程 (圆的直径的端点是、).87. 圆系方程(1)过点,的圆系方程是,其中是直线的方程,是待定的系数(2)过直线:及圆:的交点的圆系方程是,是待定的系数(3) 过圆:及圆:的交点的圆系方程是,是待定的系数88.点及圆的位置关系点及圆的位置关系有三种假设,那么点在圆外;点在圆上;点在圆内.89.直线及圆的位置关系直线及圆的位置关系有三种:;.其中.90.两圆位置关系的断定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,;.91.圆的切线方程(1)圆假设切点在圆上,那么切线只有一条,其方程是 .当圆外时, 表示过两个切点的切点弦方程过圆外一点的切线方程可设为,再利用相切条件求k,这
12、时必有两条切线,留意不要漏掉平行于y轴的切线斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线(2)圆过圆上的点的切线方程为;斜率为的圆的切线方程为.92.椭圆的参数方程是.93.椭圆焦半径公式 ,.94椭圆的的内外部1点在椭圆的内部.2点在椭圆的外部.95. 椭圆的切线方程 (1)椭圆上一点处的切线方程是. 2过椭圆外一点所引两条切线的切点弦方程是. 3椭圆及直线相切的条件是.96.双曲线的焦半径公式,.97.双曲线的内外部(1)点在双曲线的内部.(2)点在双曲线的外部.98.双曲线的方程及渐近线方程的关系(1假设双曲线方程为渐近线方程:. (2)假设渐近线方程为双曲线可设为. (3
13、)假设双曲线及有公共渐近线,可设为,焦点在x轴上,焦点在y轴上.99. 双曲线的切线方程 (1)双曲线上一点处的切线方程是. 2过双曲线外一点所引两条切线的切点弦方程是. 3双曲线及直线相切的条件是.100. 抛物线的焦半径公式抛物线焦半径.过焦点弦长.101.抛物线上的动点可设为P或 P,其中 .102.二次函数的图象是抛物线:1顶点坐标为;2焦点的坐标为;3准线方程是.(1)点在抛物线的内部.点在抛物线的外部.(2)点在抛物线的内部.点在抛物线的外部.(3)点在抛物线的内部.点在抛物线的外部.(4) 点在抛物线的内部.点在抛物线的外部.104. 抛物线的切线方程(1)抛物线上一点处的切线方
14、程是. 2过抛物线外一点所引两条切线的切点弦方程是. 3抛物线及直线相切的条件是.105.两个常见的曲线系方程(1)过曲线,的交点的曲线系方程是(为参数).(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.106.直线及圆锥曲线相交的弦长公式 或弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率. 107.圆锥曲线的两类对称问题1曲线关于点成中心对称的曲线是.2曲线关于直线成轴对称的曲线是.108.“四线一方程 对于一般的二次曲线,用代,用代,用代,用代,用代即得方程,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109证明直线及直线的平行的思索途径
15、1转化为断定共面二直线无交点;2转化为二直线同及第三条直线平行;3转化为线面平行;4转化为线面垂直;5转化为面面平行.110证明直线及平面的平行的思索途径1转化为直线及平面无公共点;2转化为线线平行;3转化为面面平行.111证明平面及平面平行的思索途径1转化为断定二平面无公共点;2转化为线面平行;3转化为线面垂直.112证明直线及直线的垂直的思索途径1转化为相交垂直;2转化为线面垂直;3转化为线及另一线的射影垂直;4转化为线及形成射影的斜线垂直.113证明直线及平面垂直的思索途径1转化为该直线及平面内任始终线垂直;2转化为该直线及平面内相交二直线垂直;3转化为该直线及平面的一条垂线平行;4转化
16、为该直线垂直于另一个平行平面;5转化为该直线及两个垂直平面的交线垂直.114证明平面及平面的垂直的思索途径1转化为推断二面角是直二面角;2转化为线面垂直.115.空间向量的加法及数乘向量运算的运算律(1)加法交换律:ab=ba(2)加法结合律:(ab)c=a(bc)(3)数乘安排律:(ab)=ab116.平面对量加法的平行四边形法那么向空间的推广始点一样且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间随意两个向量a、b(b0 ),ab存在实数使a=b三点共线.、共线且不共线且不共线.118.共面对量定理 向量p
17、及两个不共线的向量a、b共面的存在实数对,使推论 空间一点P位于平面MAB内的存在有序实数对,使,或对空间任肯定点O,有序实数对,使.和不共线的三点A、B、C,满意,那么当时,对于空间任一点,总有P、A、B、C四点共面;当时,假设平面ABC,那么P、A、B、C四点共面;假设平面ABC,那么P、A、B、C四点不共面四点共面及、共面平面ABC.120.空间向量根本定理 假如三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使pxaybzc推论 设O、A、B、C是不共面的四点,那么对空间任一点P,都存在唯一的三个有序实数x,y,z,使.121.射影公式向量=a和轴,
18、e是上及同方向的单位向量.作A点在上的射影,作B点在上的射影,那么a,e=ae122.向量的直角坐标运算设a,b那么(1)ab;(2)ab;(3)a (R);(4)ab;A,B,那么= .124空间的线线平行或垂直设,那么;.125.夹角公式 设a,b,那么cosa,b=.推论 ,此即三维柯西不等式.126. 四面体的对棱所成的角四面体中, 及所成的角为,那么.127异面直线所成角=其中为异面直线所成角,分别表示异面直线的方向向量128.直线及平面所成角(为平面的法向量).129.假设所在平面假设及过假设的平面成的角,另两边,及平面成的角分别是、,为的两个内角,那么.特殊地,当时,有.所在平面
19、假设及过假设的平面成的角,另两边,及平面成的角分别是、,为的两个内角,那么.特殊地,当时,有.131.二面角的平面角或,为平面,的法向量.132.三余弦定理设AC是内的任一条直线,且BCAC,垂足为C,又设AO及AB所成的角为,AB及AC所成的角为,AO及AC所成的角为那么.133. 三射线定理假设夹在平面角为的二面角间的线段及二面角的两个半平面所成的角是,及二面角的棱所成的角是,那么有 ;(当且仅当时等号成立).134.空间两点间的间隔 公式 假设A,B,那么 =.135.点到直线间隔 (点在直线上,直线的方向向量a=,向量b=).136.异面直线间的间隔 (是两异面直线,其公垂向量为,分别
20、是上任一点,为间的间隔 ).137.点到平面的间隔 为平面的法向量,是经过面的一条斜线,.138.异面直线上两点间隔 公式 . (两条异面直线a、b所成的角为,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,). 140. 长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,那么有.立体几何中长方体对角线长的公式是其特例.141. 面积射影定理 .(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的为).142. 斜棱柱的直截面斜棱柱的侧棱长是,侧面积和体积分别是和,它的直截面的周长和面积分别是和,那么.143作截面的根据三个平面两两相交,有三条交线,那么这三条
21、交线交于一点或互相平行.144棱锥的平行截面的性质假如棱锥被平行于底面的平面所截,那么所得的截面及底面相像,截面面积及底面面积的比等于顶点到截面间隔 及棱锥高的平方比对应角相等,对应边对应成比例的多边形是相像多边形,相像多边形面积的比等于对应边的比的平方;相应小棱锥及小棱锥的侧面积的比等于顶点到截面间隔 及棱锥高的平方比145.欧拉定理(欧拉公式) (简洁多面体的顶点数V、棱数E和面数F).1=各面多边形边数和的一半.特殊地,假设每个面的边数为的多边形,那么面数F及棱数E的关系:;2假设每个顶点引出的棱数为,那么顶点数V及棱数E的关系:.146.球的半径是R,那么其体积,其外表积147.球的组
22、合体 (1)球及长方体的组合体: 长方体的外接球的直径是长方体的体对角线长. (2)球及正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球及正四面体的组合体: 棱长为的正四面体的内切球的半径为,外接球的半径为.148柱体、锥体的体积是柱体的底面积、是柱体的高.是锥体的底面积、是锥体的高.149.分类计数原理加法原理.150.分步计数原理乘法原理.151.排列数公式 =.(,N*,且)注:规定.152.排列恒等式 (1;2;3; 4;5.(6) .153.组合数公式 =(N*,且).154.组合
23、数的两特性质(1)= ;(2) +=.注:规定. 155.组合恒等式1;2;3; 4=;5.(6).(7). (8).(9).(10).156.排列数及组合数的关系 .157单条件排列以下各条的大前提是从个元素中取个元素的排列.1“在位及“不在位某特元必在某位有种;某特元不在某位有补集思想着眼位置着眼元素种.2紧贴及插空即相邻及不相邻定位紧贴:个元在固定位的排列有种.浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;插空:两组元素分别有k、h个,把它们合在一起来作全排列,k个的一组互不能挨近的全部排列数有种.3两组元素各一样的插空 个大球个小球排成一列,小球必分开,问
24、有多少种排法?当时,无解;当时,有种排法.4两组一样元素的排列:两组元素有m个和n个,各组元素分别一样的排列数为.158安排问题1(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其安排方法数共有.2(平均分组无归属问题)将相异的个物体等分为无记号或无依次的堆,其安排方法数共有.3(非平均分组有归属问题)将相异的个物体分给个人,物件必需被分完,分别得到,件,且,这个数彼此不相等,那么其安排方法数共有.4(非完全平均分组有归属问题)将相异的个物体分给个人,物件必需被分完,分别得到,件,且,这个数中分别有a、b、c、个相等,那么其安排方法数有 .5(非平均分组无归属问题)将相异的个物体分为
25、随意的,件无记号的堆,且,这个数彼此不相等,那么其安排方法数有.6(非完全平均分组无归属问题)将相异的个物体分为随意的,件无记号的堆,且,这个数中分别有a、b、c、个相等,那么其安排方法数有.7(限定分组有归属问题)将相异的个物体分给甲、乙、丙,等个人,物体必需被分完,假如指定甲得件,乙得件,丙得件,时,那么无论,等个数是否全相异或不全相异其安排方法数恒有.159“错位问题及其推广贝努利装错笺问题:信封信及个信封全部错位的组合数为.推广: 个元素及个位置,其中至少有个元素错位的不同组合总数为.160不定方程的解的个数(1)方程的正整数解有个.(2) 方程的非负整数解有 个.(3) 方程满意条件
26、(,)的非负整数解有个.(4) 方程满意条件(,)的正整数解有个.161.二项式定理 ;二项绽开式的通项公式.162.等可能性事务的概率.163.互斥事务A,B分别发生的概率的和P(AB)=P(A)P(B)164.个互斥事务分别发生的概率的和P(A1A2An)=P(A1)P(A2)P(An)165.独立事务A,B同时发生的概率P(AB)= P(A)P(B).166.n个独立事务同时发生的概率 P(A1 A2 An)=P(A1) P(A2) P(An)167.n次独立重复试验中某事务恰好发生k次的概率168.离散型随机变量的分布列的两特性质1;2.169.数学期望170.数学期望的性质1.2假设
27、,那么.(3) 假设听从几何分布,且,那么.171.方差172.标准差=.173.方差的性质(1);(2假设,那么.(3) 假设听从几何分布,且,那么.175.正态分布密度函数,式中的实数,0是参数,分别表示个体的平均数及标准差.176.标准正态分布密度函数.177.对于,取值小于x的概率.178.回来直线方程 ,其中.179.相关系数 .|r|1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.180.特殊数列的极限 1.2.3无穷等比数列 ()的和.181. 函数的极限定理.182.函数的夹逼性定理 假如函数f(x),g(x),h(x)在点x0的旁边满意:1;2常数,那么
28、.本定理对于单侧极限和的状况仍旧成立.1,;2,.184.两个重要的极限 1;2(e=).185.函数极限的四那么运算法那么 假设,那么(1);(2);(3).186.数列极限的四那么运算法那么 假设,那么(1);(2);(3)(4)( c是常数).187.在处的导数或改变率或微商.188.瞬时速度.189.瞬时加速度.190.在的导数.191. 函数在点处的导数的几何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.192.几种常见函数的导数(1) C为常数.(2) .(3) .(4) . (5) ;.(6) ; .193.导数的运算法那么1.2.3.194.复合函数的求导法那么
29、 设函数在点处有导数,函数在点处的对应点U处有导数,那么复合函数在点处有导数,且,或写作.195.常用的近似计算公式当充小时(1);;(2); ;(3);(4);(5)为弧度;(6)为弧度;(7)为弧度196.判别是极大小值的方法当函数在点处连续时,1假如在旁边的左侧,右侧,那么是极大值;2假如在旁边的左侧,右侧,那么是微小值.197.复数的相等.198.复数的模或肯定值=.199.复数的四那么运算法那么 (1);(2);(3);(4).200.复数的乘法的运算律对于任何,有交换律:.结合律:.安排律: .201.复平面上的两点间的间隔 公式 ,. 202.向量的垂直 非零复数,对应的向量分别是,那么 的实部为零为纯虚数 (为非零实数).203.实系数一元二次方程的解 实系数一元二次方程,假设,那么;假设,那么;假设,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根.