高一数学必修一全册知识点定义公式定理1.docx

上传人:叶*** 文档编号:34941762 上传时间:2022-08-19 格式:DOCX 页数:7 大小:129.34KB
返回 下载 相关 举报
高一数学必修一全册知识点定义公式定理1.docx_第1页
第1页 / 共7页
高一数学必修一全册知识点定义公式定理1.docx_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《高一数学必修一全册知识点定义公式定理1.docx》由会员分享,可在线阅读,更多相关《高一数学必修一全册知识点定义公式定理1.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一数学必修一全册学问点(定义、公式、定理)第一章 集合与函数概念一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素确实定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y(3) 元素的无序性: 如:a,b,c和a,c,b是表示同一个集合3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2) 集合的表示方法:列举法与描绘法。u 留意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列

2、举法:a,b,c2) 描绘法:将集合中的元素的公共属性描绘出来,写在大括号内表示集合的方法。xR| x-32 ,x| x-323) 语言描绘法:例:不是直角三角形的三角形4) Venn图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合例:x|x2=5二、集合间的根本关系1.“包含”关系子集留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素一样

3、则两集合相等”即: 任何一个集合是它本身的子集。AA真子集:假如AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)假如 AB, BC ,那么 AC 假如AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交 集并 集补 集定 义由全部属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|x

4、A,或xB)设S是一个集合,A是S的一个子集,由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集)SA记作,即CSA=韦恩图示SA性 质AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 例题:1.下列四组对象,能构成集合的是 ( )A某班全部高个子的学生 B闻名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合a,b,c 的真子集共有 个 3.若集合M=y|y=x2-2x+1,xR,N=x|x0,则M与N的关系是 .4.设集合A=,B=,

5、若AB,则的取值范围是 5.50名学生做的物理、化学两种试验,已知物理试验做得正确得有40人,化学试验做得正确得有31人,两种试验都做错得有4人,则这两种试验都做对的有 人。6. 用描绘法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A=x| x2+2x-8=0, B=x| x2-5x+6=0, C=x| x2-mx+m2-19=0, 若BC,AC=,求m的值二、函数的有关概念1函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数记作: y=f(

6、x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域留意:1定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要根据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必需大于零;(4)指数、对数式的底必需大于零且不等于1. (5)假如函数是由一些根本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不行以等于零, (7)实际问题中的函数的定义域还要保证明际问题有意义.u 一样函数的推断方法:

7、表达式一样(与表示自变量和函数值的字母无关);定义域一样 (两点必需同时具备)(见课本21页相关例2)2值域 : 先考虑其定义域(1)视察法 (2)配方法(3)代换法3. 函数图象学问归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法A、 描点法:B、 图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4区间

8、的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5映射一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的随意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:AB来说,则应满意:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部

9、分的自变量的取值状况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数假如y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。 二函数的性质1.函数的单调性(部分性质)(1)增函数设函数y=f(x)的定义域为I,假如对于定义域I内的某个区间D内的随意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.假如对于区间D上的随意两个自变量的值x1,x2,当x1x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为

10、y=f(x)的单调减区间.留意:函数的单调性是函数的部分性质;(2) 图象的特点假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的断定方法(A) 定义法: 任取x1,x2D,且x1x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即推断差f(x1)f(x2)的正负); 下结论(指出函数f(x)在给定的区间D上的单调性)(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数fg(x)的单调性与构成它的函数u=g(

11、x),y=f(u)的单调性亲密相关,其规律:“同增异减”留意:函数的单调区间只能是其定义域的子区间 ,不能把单调性一样的区间和在一起写成其并集. 8函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的随意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数(2)奇函数一般地,对于函数f(x)的定义域内的随意一个x,都有f(x)=f(x),那么f(x)就叫做奇函数(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称利用定义推断函数奇偶性的步骤:首先确定函数的定义域,并推断其是否关于原点对称;确定f(x)与f(x)的关系;作出相应结论:若f(

12、x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数留意:函数定义域关于原点对称是函数具有奇偶性的必要条件首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义断定; (2)由 f(-x)f(x)=0或f(x)f(-x)=1来断定; (3)利用定理,或借助函数的图象断定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1) 凑配法2) 待

13、定系数法3) 换元法4) 消参法10函数最大(小)值(定义见课本p36页) 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 利用函数单调性的推断函数的最大(小)值:假如函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);假如函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:1.求下列函数的定义域: 2.设函数的定义域为,则函数的定义域为_ _ 3.若函数的定义域为,则函数的定义域是 4.函数 ,若,则= 5.求下列函数的值域: (3) (4)6

14、.已知函数,求函数,的解析式7.已知函数满意,则= 。8.设是R上的奇函数,且当时,则当时= 在R上的解析式为 9.求下列函数的单调区间: 10.推断函数的单调性并证明你的结论11.设函数推断它的奇偶性并且求证:第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联络起来,并利用函数的性质找出零点4、二次函数的零点:二次函数(1),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点(2),方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点(3),方程无实根,二次函数的图象与轴无交点,二次函数无零点5.函数的模型 搜集数据画散点图选择函数模型求函数模型用函数模型说明实际问题符合实际不符合实际检验

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁