《河北省石家庄市2017届高三第二次质量检测数学文试题Word版含答案.docx》由会员分享,可在线阅读,更多相关《河北省石家庄市2017届高三第二次质量检测数学文试题Word版含答案.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、石家庄市2017届高三复习教学质量检测(二)高三数学(文科)第卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,则 ( )A B C D2.在复平面中,复数对应的点在 ( )A第一象限 B第二象限 C第三象限 D第四象限3.“”是“”的( )A充分不必要条件 B必要不充分条件 C充要条件 D 即不充分也不必要条件4.若,且,则 ( )A B C. D5.执行下面的程序框图,则输出的值为 ( )A98 B99 C. 100 D1016. 李冶(1192-1279 ),真定栾城(今属河北石家庄市)人,金元时期的数
2、学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中益古演段主要探讨平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近间隔 均为二十步,则圆池直径与方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )A10步,50步 B20步,60步 C. 30步,70步 D40步,80步7.某几何体的三视图如图所示,则该几何体的体积是 ( )A 16 B20 C. 52 D608. 已知函数,则的一个单调递减区间是( )A B C. D9.四棱锥的底面是边长为6的正方形,且,若
3、一个半径为1的球与此四棱锥全部面都相切,则该四棱锥的高是( )A6 B5 C. D10.若满意约束条件,则的最小值为 ( )A-2 B C. D11.已知函数,若,则实数的取值范围是( )A B C. D12.已知双曲线的左、右焦点分别为,过点且垂直于轴的直线与该双曲线的左支交于两点,分别交轴于两点,若的周长为12,则获得最大值时双曲线的离心率为( )A B C. D第卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分.13.设样本数据的方差是4,若,则的方差为 14.等比数列中,若,则 15.在中,角的对边分别为,若,则角的大小为 16.非零向量的夹角为,且满意,向量
4、组由一个与两个排列而成,向量组由两个与一个排列而成,若全部可能值中的最小值为,则 三、解答题:本大题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤. 17.已知等差数列的前项与为,若.(1)求的值;(2)若数列满意,求数列的前项与.18.如图,三棱柱中,侧面是边长为2的菱形,且.点在平面内的正投影为,且在上,点在线段上,且.(1)证明:直线平面;(2)求二面角的体积.19.交强险是车主必需为机动车购置的险种,若一般6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的状况相联络,发生交通事故的次数越多,费
5、率也就越高,详细浮动状况如下表:交强险浮动因素与浮动费率比率表浮动因素浮动比率上一个年度未发生有责任道路交通事故下浮10%上两个年度未发生有责任道路交通事故下浮20%上三个及以上年度未发生有责任道路交通事故下浮30%上一个年度发生一次有责任不涉及死亡的道路交通事故0%上一个年度发生两次及两次以上有责任道路交通事故上浮10%上一个年度发生有责任道路交通死亡事故上浮30%某机构为了探讨某一品牌一般6座以下私家车的投保状况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的状况,统计得到了下面的表格:类型数量105520155(1)求一辆一般6座以下私家车在第四年续保时保费高于根本保费
6、的频率;(2)某二手车销售商特地销售这一品牌的二手车,且将下一年的交强险保费高于根本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一样,完成下列问题:若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机选择两辆车,求这两辆车恰好有一辆为事故车的概率;若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.20.已知椭圆的左、右顶点分别为,且长轴长为8,为椭圆上一点,直线的斜率之积为.(1)求椭圆的方程;(2)设为原点,过点的动直线与椭圆交于两点,求的取值范围.21.已知函数.
7、(1)当时,求曲线在处的切线方程;(2)探讨函数在上的单调性.请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程.(1)若曲线与只有一个公共点,求的值;(2)为曲线上的两点,且,求的面积最大值.23.选修4-5:不等式选讲设函数的最大值为.(1)作出函数的图象;(2)若,求的最大值.2016-2017学年度石家庄市质检二检测(数学理科答案)一、选择题:1-5 CDABB 6-10 BBADC 11-12DC二、填空题13. 4 14.
8、15. 75 16 三、解答题:(解答题只给出一种或两种答案,在评卷过程中遇到的不同答案,请参照此标准酌情给分)17.解:()由已知得, 且,设数列的公差为,则有,由,得,即,()由()知,得设数列的前项与为 ,得18.解析:()证明:因为点在平面内的正投影为,则面,又因为,其中是边长为2的菱形,且,则.过点作交于点,并连接,且由得,易证,为平行四边形,即,又因为面,平面.()由上问面,则有,又因为,19.解:()一辆一般6座以下私家车第四年续保时保费高于根本保费的频率为.()由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,设为,四辆非事故车设为.从六辆车中随机选择两
9、辆车共有总共15种状况.其中两辆车恰好有一辆事故车共有,总共8种状况。所以该顾客在店内随机选择的两辆车恰好有一辆事故车的概率为. 由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆, 所以一辆车盈利的平均值为元.20解:()设,则直线的斜率为,直线的斜率为.于是由,得,整理得.()当直线的斜率存在时,设直线的方程为,点的坐标分别为,直线与椭圆方程联立得 .所以,从而,当直线斜率不存在时的值为-20综上所述的取值范围为.21解析:()当时,曲线时,切线的斜率为,又切线过点所以切线方程为当时,函数在上单调递减;6分当时,令,当时,即,此时,函数在上单调
10、递增;8分当时,即,方程有两个不等实根,所以, 此时,函数在上单调递增;在上单调递减综上所述,当时,的单减区间是;当时,的单减区间是,单增区间是当时,单增区间是.22.【解析】()曲线是以为圆心,以为半径的圆;直线的直角坐标方程为由直线与圆只有一个公共点,则可得,解得: (舍),所以:()曲线的极坐标方程为,设的极角为, 的极角为, 则,所以当时,获得最大值的面积最大值.解法二:因为曲线是以为圆心,以为半径的圆,且由正弦定理得:,所以由余弦定理得,所以,所以的面积最大值23.【解析】()(假如没有此步骤,须要图中标示出对应的关键点,否则扣分)画出图象如图,()由()知,的最大值为,当且仅当时,等号成立