《高三数学第一轮复习 知识点.docx》由会员分享,可在线阅读,更多相关《高三数学第一轮复习 知识点.docx(82页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 高中数学一轮复习知识点第一章-集合 考试内容:集合、子集、补集、交集、并集逻辑联结词四种命题充分条件和必要条件考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;驾驭有关的术语和符号,并会用它们正确表示一些简单的集合(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;驾驭充分条件、必要条件及充要条件的意义01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的运用.
2、2. 集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:任何一个集合是它本身的子集,记为;空集是任何集合的子集,记为;空集是任何非空集合的真子集;假如,同时,那么A = B.假如.注:Z= 整数() Z =全体整数 ()已知集合S 中A的补集是一个有限集,则集合A也是有限集.()(例:S=N; A=,则CsA= 0) 空集的补集是全集. 若集合A=集合B,则CBA = , CAB = CS(CAB)= D ( 注 :CAB = ).3. (x,y)|xy =0,xR,yR坐标轴上的点集.(x,y)|xy0,xR,yR二、四象限的点集. (x,y)|
3、xy0,xR,yR 一、三象限的点集.注:对方程组解的集合应是点集.例: 解的集合(2,1).点集与数集的交集是. (例:A =(x,y)| y =x+1 B=y|y =x2+1 则AB =)4. n个元素的子集有2n个. n个元素的真子集有2n 1个. n个元素的非空真子集有2n2个.5. 一个命题的否命题为真,它的逆命题确定为真. 否命题逆命题.一个命题为真,则它的逆否命题确定为真. 原命题逆否命题.例:若应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. .解:逆否:x + y =3x = 1或y = 2.,故是的既不是充分,又不是必要条件.小范围推
4、出大范围;大范围推不出小范围.3. 例:若. 4. 集合运算:交、并、补.5. 主要性质和运算律(1) 包含关系:(2) 等价关系:(3) 集合的运算律:交换律: 结合律: 安排律:.0-1律:等幂律:求补律:ACUA= ACUA=U CUU= CU=U 反演律:CU(AB)= (CUA)(CUB) CU(AB)= (CUA)(CUB)6. 有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card() =0.基本公式:(3) card(UA)= card(U)- card(A) (二)含确定值不等式、一元二次不等式的解法及延长根轴法(零点分段法)将不等式化
5、为a0(x-x1)(x-x2)(x-xm)0(0”,则找“线”在x轴上方的区间;若不等式是“b解的探讨;一元二次不等式ax2+box0(a0)解的探讨. 二次函数()的图象一元二次方程有两相异实根有两相等实根 无实根 R (1)标准化:移项通分化为0(或0); 0(或0)的形式,(2)转化为整式不等式(组)(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类探讨.(3)几何法:依据确定值的几何意义用数形结合思想方法解题.一元二次方程ax2+bx+c=0(a0)(1)根的“零分布”:依据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列
6、式解之.(三)简易逻辑1、命题的定义:可以推断真假的语句叫做命题。2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。构成复合命题的形式:p或q(记作“pq” );p且q(记作“pq” );非p(记作“q” ) 。3、“或”、 “且”、 “非”的真值推断(1)“非p”形式复合命题的真假与F的真假相反;(2)“p且q”形式复合命题当P与q同为真时为真,其他状况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他状况时为真4、四种命题的形式:原命题:若P则q;
7、逆命题:若q则p;否命题:若P则q;逆否命题:若q则p。(1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否定原命题的条件和结论,所得的命题是否命题; (3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)、原命题为真,它的逆命题不确定为真。、原命题为真,它的否命题不确定为真。、原命题为真,它的逆否命题确定为真。6、假如已知pq那么我们说,p是q的充分条件,q是p的必要条件。若pq且qp,则称p是q的充要条件,记为pq.7、反证法:从命题结论的反面动身(假设),引出(与已知、公
8、理、定理)冲突,从而否定假设证明原命题成立,这样的证明方法叫做反证法。高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性反函数互为反函数的函数图像间的关系指数概念的扩充有理指数幂的运算性质指数函数对数对数的运算性质对数函数函数的应用考试要求:(1)了解映射的概念,理解函数的概念(2)了解函数单调性、奇偶性的概念,驾驭推断一些简单函数的单调性、奇偶性的方法(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数(4)理解分数指数幂的概念,驾驭有理指数幂的运算性质,驾驭指数函数的概念、图像 和性质(5)理解对数的概念,驾驭对数的运算性质;驾驭对数函数的概念、图像和
9、性质(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题 02. 函数 知识要点一、本章知识网络结构:二、知识回顾:(一) 映射与函数1. 映射与一一映射函数三要素是定义域,对应法则和值域,而定义域和对应法则是起确定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.反函数的定义设函数的值域是C,依据这个函数中x,y 的关系,用y把x表示出,得到x=(y). 若对于y在C中的任何一个值,通过x=(y),x在A中都有唯一的值和它对应,那么,x=(y)就表示y是自变量,x是自变量y的函数,这样的函数x=(y) (yC)叫做
10、函数的反函数,记作,习惯上改写成(二)函数的性质函数的单调性定义:对于函数f(x)的定义域I内某个区间上的随意两个自变量的值x1,x2,若当x1x2时,都有f(x1)f(x2),则说f(x)在这个区间上是增函数;若当x1f(x2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.7. 奇函数,偶函数:偶函数:设()为偶函数上一点,则()也是图象上一点.偶函数的判定:两个条件同时满意定义域确定要关于轴对称,例如:在上不是偶函数.满意,
11、或,若时,.奇函数:设()为奇函数上一点,则()也是图象上一点.奇函数的判定:两个条件同时满意定义域确定要关于原点对称,例如:在上不是奇函数.满意,或,若时,.8. 对称变换:y = f(x)y =f(x)y =f(x)9. 推断函数单调性(定义)作差法:对带根号的确定要分子有理化,例如:在进行探讨.10. 外层函数的定义域是内层函数的值域.例如:已知函数f(x)= 1+的定义域为A,函数ff(x)的定义域是B,则集合A与集合B之间的关系是 . 解:的值域是的定义域,的值域,故,而A,故.11. 常用变换:.证:证:12. 熟识常用函数图象:例:关于轴对称. 关于轴对称.熟识分式图象:例:定义
12、域,值域值域前的系数之比.(三)指数函数与对数函数指数函数的图象和性质a10a0时,y1;x0时,0y0时,0y1;x1.(5)在 R上是增函数(5)在R上是减函数对数函数y=logax的图象和性质:对数运算:(以上)a10a10a10a10a10a10a10a10a10a10a0时 时(5)在(0,+)上是增函数在(0,+)上是减函数注:当时,.:当时,取“+”,当是偶数时且时,而,故取“”.例如:中x0而中xR).()与互为反函数.当时,的值越大,越靠近轴;当时,则相反.(四)方法总结.相同函数的判定方法:定义域相同且对应法则相同.对数运算:(以上)注:当时,.:当时,取“+”,当是偶数时
13、且时,而,故取“”.例如:中x0而中xR).()与互为反函数.当时,的值越大,越靠近轴;当时,则相反.函数表达式的求法:定义法;换元法;待定系数法.反函数的求法:先解x,互换x、y,注明反函数的定义域(即原函数的值域).分母不为0;偶次根式中被开方数不小于0;对数的真数大于0,底数大于零且不等于1;零指数幂的底数不等于零;实际问题要考虑实际意义等.函数值域的求法:配方法(二次或四次);“判别式法”;反函数法;换元法;不等式法;函数的单调性法.单调性的判定法:设x,x是所探讨区间内任两个自变量,且xx;判定f(x)与f(x)的大小;作差比较或作商比较.奇偶性的判定法:首先考察定义域是否关于原点对
14、称,再计算f(-x)与f(x)之间的关系:f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;f(-x)/f(x)=1是偶;f(x)f(-x)=-1为奇函数.图象的作法与平移:据函数表达式,列表、描点、连光滑曲线;利用熟知函数的图象的平移、翻转、伸缩变换;利用反函数的图象与对称性描绘函数图象.高中数学 第三章 数列考试内容:数列等差数列及其通项公式等差数列前n项和公式等比数列及其通项公式等比数列前n项和公式考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能依据递推公式写出数列的前几项
15、(2)理解等差数列的概念,驾驭等差数列的通项公式与前n项和公式,并能解决简单的实际问题(3)理解等比数列的概念,驾驭等比数列的通项公式与前n项和公式,井能解决简单的实际问题 03. 数 列 知识要点数列数列的定义数列的有关概念数列的通项数列与函数的关系项项数通项等差数列等差数列的定义等差数列的通项等差数列的性质等差数列的前n项和等比数列等比数列的定义等比数列的通项等比数列的性质等比数列的前n项和等差数列等比数列定义递推公式;通项公式()中项()()前项和重要性质1. 等差、等比数列:等差数列等比数列定义通项公式=+(n-1)d=+(n-k)d=+-d求和公式中项公式A= 推广:2=。推广:性质
16、1若m+n=p+q则 若m+n=p+q,则。2若成A.P(其中)则也为A.P。若成等比数列 (其中),则成等比数列。3 成等差数列。成等比数列。4 , 5看数列是不是等差数列有以下三种方法:2()(为常数).看数列是不是等比数列有以下四种方法:(,)注:i. ,是a、b、c成等比的双非条件,即a、b、c等比数列.ii. (ac0)为a、b、c等比数列的充分不必要.iii. 为a、b、c等比数列的必要不充分.iv. 且为a、b、c等比数列的充要.留意:随意两数a、c不确定有等比中项,除非有ac0,则等比中项确定有两个.(为非零常数).正数列成等比的充要条件是数列()成等比数列.数列的前项和与通项
17、的关系:注: (可为零也可不为零为等差数列充要条件(即常数列也是等差数列)若不为0,则是等差数列充分条件).等差前n项和 可以为零也可不为零为等差的充要条件若为零,则是等差数列的充分条件;若不为零,则是等差数列的充分条件. 非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)2. 等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍;若等差数列的项数为2,则;若等差数列的项数为,则,且, . 3. 常用公式:1+2+3 +n = 注:熟识常用通项:9,99,999,; 5,55,555,.4. 等比数列的前项和公式的常见应用题:生产部门中有增长率的总产量问题. 例如
18、,第一年产量为,年增长率为,则每年的产量成等比数列,公比为. 其中第年产量为,且过年后总产量为:银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款:=.分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.5. 数列常见的几种形式:(p、q为二阶常数)用特证根方法求解.详细步骤:写出特征方程(对应,x对应),并设二根若可设,若可设;由初始值确定.(P、r为常数)用转化等差,等比数列;逐项选代;消去常数n转化为的形式,再用特征根方法求;(公式法),由确定.转化等差,等比:.选代法:.用特
19、征方程求解:.由选代法推导结果:.6. 几种常见的数列的思想方法:等差数列的前项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法:一是求使,成立的值;二是由利用二次函数的性质求的值.假如数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前项和可依照等比数列前项和的推倒导方法:错位相减求和. 例如:两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差的最小公倍数.2. 推断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n2的随意自然数,验证为同一常数。(2)通项公式法。(3)中项公式法:验证都成立。3.
20、 在等差数列中,有关Sn 的最值问题:(1)当0,d0时,满意的项数m使得取最大值. (2)当0时,满意的项数m使得取最小值。在解含确定值的数列最值问题时,留意转化思想的应用。(三)、数列求和的常用方法1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。 2.裂项相消法:适用于其中 是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。3.错位相减法:适用于其中 是等差数列,是各项不为0的等比数列。 4.倒序相加法: 类似于等差数列前n项和公式的推导方法.1): 1+2+3+.+n = 2) 1+3+5+.+(2n-1) = 3) 4) 5) 6) 高中数学第四章-三角
21、函数考试内容:角的概念的推广弧度制随意角的三角函数单位圆中的三角函数线同角三角函数的基本关系式.正弦、余弦的诱导公式两角和与差的正弦、余弦、正切二倍角的正弦、余弦、正切正弦函数、余弦函数的图像和性质周期函数函数y=Asin(x+)的图像正切函数的图像和性质已知三角函数值求角正弦定理余弦定理斜三角形解法考试要求:(1)理解随意角的概念、弧度的意义能正确地进行弧度与角度的换算(2)驾驭随意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;驾驭同角三角函数的基本关系式;驾驭正弦、余弦的诱导公式;了解周期函数与最小正周期的意义(3)驾驭两角和与两角差的正弦、余弦、正切公式;驾驭二倍角的正弦、余弦
22、、正切公式(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(x+)的简图,理解A.、的物理意义(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示(7)驾驭正弦定理、余弦定理,并能初步运用它们解斜三角形(8)“同角三角函数基本关系式:sin2+cos2=1,sin/cos=tan,tancos=1”04. 三角函数 知识要点1. 与(0360)终边相同的角的集合(角与角的终边重合):终边在x轴上的角的集合: 终边在y轴上的角的集合:终边
23、在坐标轴上的角的集合: 终边在y=x轴上的角的集合: 终边在轴上的角的集合:若角与角的终边关于x轴对称,则角与角的关系:若角与角的终边关于y轴对称,则角与角的关系:若角与角的终边在一条直线上,则角与角的关系:角与角的终边相互垂直,则角与角的关系:2. 角度与弧度的互换关系:360=2 180= 1=5718留意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad=5718 10.01745(rad)3、弧长公式:. 扇形面积公式:4、三角函数:设是一个随意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则 ; ; ; ; ;. .5、
24、三角函数在各象限的符号:(一全二正弦,三切四余弦)6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:三角函数 定义域sinxcosxtanxcotxsecxcscx8、同角三角函数的基本关系式: 9、诱导公式:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系 公式组二 公式组三 公式组四 公式组五 公式组六 (二)角与角之间的互换公式组一 公式组二 公式组三 公式组四 公式组五 ,.10. 正弦、余弦、正切、余切函数的图象的性质:(A、0)定义域RRR值域RR周期性 奇偶性奇函数偶函数奇函数奇函数当非奇非偶当奇函数单调性上为增函数;上为减函数()
25、;上为增函数上为减函数()上为增函数()上为减函数()上为增函数;上为减函数()留意:与的单调性正好相反;与的单调性也同样相反.一般地,若在上递增(减),则在上递减(增).与的周期是.或()的周期.的周期为2(,如图,翻折无效). 的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心().当;.与是同一函数,而是偶函数,则.函数在上为增函数.() 只能在某个单调区间单调递增. 若在整个定义域,为增函数,同样也是错误的.定义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满意奇偶性条件,偶函数:,奇函数:)奇偶性的
26、单调性:奇同偶反. 例如:是奇函数,是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若的定义域,则确定有.(的定义域,则无此性质)不是周期函数;为周期函数();是周期函数(如图);为周期函数();的周期为(如图),并非全部周期函数都有最小正周期,例如: . 有.11、三角函数图象的作法:)、几何法:)、描点法及其特例五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).)、利用图象变换作三角函数图象三角函数的图象变换有振幅变换、周期变换和相位变换等函数yAsin(x)的振幅|A|,周期,频率,相位初相(即当x0时的相位)(当A0,0 时以上公式可去确定值符号),由ysinx的图象上的
27、点的横坐标保持不变,纵坐标伸长(当|A|1)或缩短(当0|A|1)到原来的|A|倍,得到yAsinx的图象,叫做振幅变换或叫沿y轴的伸缩变换(用y/A替换y)由ysinx的图象上的点的纵坐标保持不变,横坐标伸长(0|1)或缩短(|1)到原来的倍,得到ysin x的图象,叫做周期变换或叫做沿x轴的伸缩变换(用x替换x)由ysinx的图象上全部的点向左(当0)或向右(当0)平行移动个单位,得到ysin(x)的图象,叫做相位变换或叫做沿x轴方向的平移(用x替换x)由ysinx的图象上全部的点向上(当b0)或向下(当b0)平行移动b个单位,得到ysinxb的图象叫做沿y轴方向的平移(用y+(-b)替换
28、y)由ysinx的图象利用图象变换作函数yAsin(x)(A0,0)(xR)的图象,要特殊留意:当周期变换和相位变换的先后依次不同时,原图象延x轴量伸缩量的区分。4、反三角函数:函数ysinx,的反函数叫做反正弦函数,记作yarcsinx,它的定义域是1,1,值域是函数ycosx,(x0,)的反应函数叫做反余弦函数,记作yarccosx,它的定义域是1,1,值域是0,函数ytanx,的反函数叫做反正切函数,记作yarctanx,它的定义域是(,),值域是函数yctgx,x(0,)的反函数叫做反余切函数,记作yarcctgx,它的定义域是(,),值域是(0,)II. 竞赛知识要点一、反三角函数.
29、1. 反三角函数:反正弦函数是奇函数,故,(确定要注明定义域,若,没有与一一对应,故无反函数)注:,.反余弦函数非奇非偶,但有,.注:,.是偶函数,非奇非偶,而和为奇函数.反正切函数:,定义域,值域(),是奇函数,.注:,.反余切函数:,定义域,值域(),是非奇非偶.,.注:,.与互为奇函数,同理为奇而与非奇非偶但满意. 正弦、余弦、正切、余切函数的解集:的取值范围 解集 的取值范围 解集的解集 的解集1 1 =1 =1 1 1 的解集: 的解集:二、三角恒等式.组一组二组三 三角函数不等式 在上是减函数若,则高中数学第五章-平面对量考试内容:向量向量的加法与减法实数与向量的积平面对量的坐标表
30、示线段的定比分点平面对量的数量积平面两点间的距离、平移考试要求:(1)理解向量的概念,驾驭向量的几何表示,了解共线向量的概念(2)驾驭向量的加法和减法(3)驾驭实数与向量的积,理解两个向量共线的充要条件(4)了解平面对量的基本定理,理解平面对量的坐标的概念,驾驭平面对量的坐标运算(5)驾驭平面对量的数量积及其几何意义,了解用平面对量的数量积可以处理有关长度、角度和垂直的问题,驾驭向量垂直的条件(6)驾驭平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能娴熟运用驾驭平移公式05. 平面对量 知识要点(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 ;字母表示:a;坐标表
31、示法 aj(,).(3)向量的长度:即向量的大小,记作a.(4)特殊的向量:零向量aOaO.单位向量aO为单位向量aO1.(5)相等的向量:大小相等,方向相同(1,1)(2,2)(6) 相反向量:a=-bb=-aa+b=0ab.平行向量也称为共线向量.运算类型几何方法坐标方法运算性质向量的加法向量的减法三角形法则,数乘向量1.是一个向量,满意:2.0时, 同向;0时, 异向;=0时, .向量的数量积是一个数1.时,.2. 4.重要定理、公式(1)平面对量基本定理e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数1,2,使a1e12e2.(2)两个向量平行的充
32、要条件abab(b0)x1y2x2y1O.(3)两个向量垂直的充要条件ababOx1x2y1y2O.(4)线段的定比分点公式设点P分有向线段所成的比为,即,则 (线段的定比分点的向量公式) (线段定比分点的坐标公式)当1时,得中点公式:()或 (5)平移公式设点P(x,y)按向量a(,)平移后得到点P(x,y),则+a或曲线yf(x)按向量a(,)平移后所得的曲线的函数解析式为:yf(x)(6)正、余弦定理正弦定理:余弦定理:a2b2c22bccosA,b2c2a22cacosB,c2a2b22abcosC.(7)三角形面积计算公式:设ABC的三边为a,b,c,其高分别为ha,hb,hc,半周
33、长为P,外接圆、内切圆的半径为R,r.S=1/2aha=1/2bhb=1/2chc S=Pr S=abc/4RS=1/2sinCab=1/2acsinB=1/2cbsinA S= 海伦公式 S=1/2(b+c-a)ra如下图=1/2(b+a-c)rc=1/2(a+c-b)rb注:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.如图: 图1中的I为SABC的内心, S=Pr 图2中的I为SABC的一个旁心,S=1/2(b+c-a)ra 附:三角形的五个“心”;重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点.内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高
34、相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.已知O是ABC的内切圆,若BC=a,AC=b,AB=c 注:s为ABC的半周长,即则:AE=1/2(b+c-a) BN=1/2(a+c-b) FC=1/2(a+b-c)综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在RtABC,c为斜边,则内切圆半径r=(如图3). 在ABC中,有下列等式成立.证明:因为所以,所以,结论!在ABC中,D是BC上随意一点,则.证明:在ABCD中,由余弦定理,有在ABC中,由余弦定理有,代入,化简可得,(斯德瓦定理)若AD是BC上的中线,;若AD是A的平分
35、线,其中为半周长;若AD是BC上的高,其中为半周长.ABC的判定:ABC为直角A + B =ABC为钝角A + BABC为锐角A + B附:证明:,得在钝角ABC中,平行四边形对角线定理:对角线的平方和等于四边的平方和.空间向量1空间向量的概念:具有大小和方向的量叫做向量注:空间的一个平移就是一个向量向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量空间的两个向量可用同一平面内的两条有向线段来表示2空间向量的运算定义:与平面对量运算一样,空间向量的加法、减法与数乘向量运算如下运算律:加法交换律:加法结合律:数乘安排律:3共线向量表示空间向量的有向线段所在的直线相互平行或重合,则这些向量叫做共线向量或平行向量平行于记作当我们说向量、共线(或/)时,表示、的有向线段所在的直线可能是同始终线,也可能是平行直线4共线向