《精品解析2022年人教版八年级数学下册第十七章-勾股定理综合训练试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版八年级数学下册第十七章-勾股定理综合训练试题(含答案解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将长方形纸片ABCD沿AE折叠,使点D恰好落在BC边上点F处,若AB3,AD5,则EC的长为( )A1B
2、CD2、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B4,5,6C5,12,13D13,14,153、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( )A4、6、8B3、4、5C5、12、13D1、3、4、如图,斜坡BC的长度为4米为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4米,则原来斜坡的水平距离CD的长度是( )米A2B4C2D65、我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1,图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正
3、方形MNKT的面积分别为S1、S2、S3若正方形EFGH的边长为3,则S1+S2+S3的值是( )A20B27C25D496、如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A64B16C8D47、如图,OAOB,则数轴上点A所表示的数是( )A1.5BCD28、下列长度的线段能组成直角三角形的是( )A3,4,6B3,4,5C6,8,9D5,12,149、下列命题属于假命题的是( )A3,4,5是一组勾股数B内错角相等,两直线平行C三角形的内角和为180D9的平方根是310、若等腰三角形两边长分别为6和8,则底边上的高等于( )A2BC2或D10第卷(非选择
4、题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在每个小正方形的边长为1的网格中,点,均落在格点上()的大小为_(度);()请在如图所示的网格中,用无刻度的直尺,画一条直线把这个六边形分成面积相等的两部分,并简要说明画法(不要求证明)_2、一个直角三角形的两边长为3和6,则第三边的边长是_3、若RtABC的三边为a,b,c,斜边c= 2,则=_4、若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为_cm25、如图,在中,A是直角,AB=3,AC=3,则BC的长为_三、解答题(5小题,每小题10分,共计50分)1、已知a,b,c满足|a(c)20(1)求a,
5、b,c的值;并求出以a,b,c为三边的三角形周长;(2)试问以a,b,c为边能否构成直角三角形?请说明理由2、生态兴则文明兴,生态衰则文明衰“十三五”以来,青岛市坚持生态优先、绿色发展理念,持续改善生态环境如图现有施工遗留的一处空地,计划改造成绿地公园,已知A90,ABAD3米,BC10米,CD8米,已知每平方米的改造费用为200元,请问改造该区域需要花费多少元?3、图、图、图都是的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段的端点都在格点上分别在图、图、图中以为边画一个等腰三角形,使该三角形的第三个顶点在格点上,且该顶点的位置不同4、如图,在矩形ABCD中,AD10
6、,AB6E为BC上一点,ED平分AEC,求:点A到DE的距离5、如图,在ABC中,AB7cm,AC25cm,BC24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发(1)求B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离-参考答案-一、单选题1、D【分析】由翻折可知:ADAF5DEEF,设ECx,则DEEF3x在RtECF中,利用勾股定理构建方程即可解决问题【详解】解:四边形ABCD是矩形,ADBC5,ABCD3,BBCD90,由翻折可知:ADAF5,DEEF,设ECx,则DEEF3x在RtA
7、BF中,BF4,CFBCBF541,在RtEFC中,EF2CE2CF2,(3x)2x212,x,EC故选:D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键2、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题【详解】解:A.,不是直角三角形,故A不符合题意;B. ,不是直角三角形,故B不符合题意;C. ,是直角三角形,故C不符合题意;D. ,不是直角三角形,故D不符合题意,故选:C【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键3、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平
8、方,那么这个三角形是直角三角形如果没有这种关系,这个就不是直角三角形【详解】解:A、42+6282,不符合勾股定理的逆定理,故本选项符合题意;B、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D、12+32=,符合勾股定理的逆定理,故本选项符合题意故选:A【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断4、A【分析】设米,米,根据勾股定理用含的代数式表示,进而列出方程,解方程得到答案【详解】解:
9、设米,米,在中,即,在中,即,解得:,即米,故选:A【点睛】本题考查的是勾股定理的应用,解题的关键是灵活运用勾股定理列出方程5、B【分析】根据八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,得出CGKG,CFDGKF,再根据S1(CG+DG)2,S2GF2,S3(KFNF)2,S1+S2+S33GF2,即可求解【详解】解:在RtCFG中,由勾股定理得:CG2+CF2=GF2,八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,CG=KG=FN,CF=DG=KF,S1=(CG+DG)2=CG2+DG2+2CGDG=CG2+CF2+2CGDG=G
10、F2+2CGDG,S2=GF2,S3=(KF-NF)2,=KF2+NF2-2KFNF=KF2+KG2-2DGCG=FG2-2CGDG,正方形EFGH的边长为3,GF2=9,S1+S2+S3=GF2+2CGDG+GF2+FG2-2CGDG=3GF2=27,故选:B【点睛】本题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质等知识,根据已知得出S1+S2+S3=3GF2=27是解题的关键6、C【分析】根据勾股定理求出正方形A的面积,根据算术平方根的定义计算即可【详解】解:由勾股定理得,正方形A的面积28922564,字母A所代表的正方形的边长为8,故选:C【点睛】本题考查
11、的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c27、C【分析】利用勾股定理求得线段OB的长,结合数轴即可得出结论【详解】解:OBOAOB,OA数轴上点A表示的数是:故选:C【点睛】本题主要考查了数轴,勾股定理利用勾股定理求得线段OB的长度是解题的关键8、B【分析】根据勾股定理的逆定理逐一判断即可【详解】解:A、32+4262,故此选项不符合题意;B、32+4252,故此选项符合题意;C、62+8292,故此选项不符合题意;D、52+122142,故此选项不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,解题的关键是理解如果三角形的三边长为a、b、c
12、满足a2+b2c2,那么这个三角形就是直角三角形9、D【分析】利用勾股数的定义、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180,正确,是真命题,不符合题意;D、9的平方根是3,故原命题是假命题,符合题意故选:D【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大10、C【分析】因为题目没有说明哪个边为腰哪个边为底,所以需要讨论,当6为腰时,此时等腰三角形的边长为
13、6、6、8;当8为腰时,此时等腰三角形的边长为6、8、8;然后根据等腰三角形的高垂直平分底边可运用勾股定理的知识求出高【详解】解:ABC是等腰三角形,ABAC,ADBC,BDCD,边长为6和8的等腰三角形有6、6、8与6、8、8两种情况,当三边是6、6、8时,底边上的高AD2;当三边是6、8、8时,同理求出底边上的高AD是故选C【点睛】本题主要考查了勾股定理和等腰三角形的性质,解题的关键在于能够利用分类讨论的思想求解二、填空题1、90 连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l 【分析】(1)运用勾股定理求出AF,AB,BF的长,再运用勾股定理逆定理判断出是直角三角形即
14、可得出结论;(2)连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l,则可得结论【详解】解:(1)连接BF,如图,由勾股得, 是直角三角形 故答案为:90;(2)连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l,如图,则直线l即为所求【点睛】本题主要考查了应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图2、或【分析】由于这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答【详解】解:分两种情况:(1)3、6都为直角边,由勾股定理得,斜边为 ;(2)3为直角边,6为斜边,由勾股定理得,
15、直角边为 故答案为:或【点睛】此题考查的知识点是勾股定理,关键要明确本题利用了分类讨论思想,是数学中常用的一种解题方法3、4【分析】根据勾股定理得出a2+b2=c2,把c=2代入求出即可【详解】解:根据勾股定理得:a2+b2=c2,c=2,a2+b2=22=4,故答案为:4【点睛】本题考查了勾股定理的应用,注意:在直角三角形中两直角边的平方和等于斜边的平方4、【分析】设三边的长是5x,12x,13x,根据周长列方程求出x的长,则三角形的三边的长即可求得,然后利用勾股定理的逆定理判断三角形是直角三角形,然后利用面积公式求解【详解】解:设三边分别为5x,12x,13x,则5x+12x+13x60,
16、x2,三边分别为10cm,24cm,26cm,102+242262,三角形为直角三角形,S10242120cm2故答案为:120【点睛】本题考查三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积,比较基础,掌握三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积是解题关键5、【分析】根据勾股定理可直接进行求解【详解】解:在中,A是直角,AB=3,AC=3,;故答案为【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键三、解答题1、(1)a=,b=5,c=,周长=;(2)不能构成直角三角形,理由见解答【分析】(1)由非数的性
17、质可分别求得a、b、c的值,进而解答即可;(2)利用勾股定理的逆定理可进行判断即可【详解】解:(1)|a(c)20a-=0,b-5=0,c-=0,a=2,b=5,c=3,以a,b,c为三边的三角形周长=2+3+5=5+5;(2)不能构成直角三角形,a2+c2=8+18=26,b2=25,a2+c2b2,不能构成直角三角形【点睛】本题主要考查非负数的性质及勾股定理的逆定理,利用非负数的性质求得a、b、c的值是解题的关键2、改造该区域需要花费6600元【分析】连接,利用勾股定理求出的长,再利用勾股定理的逆定理证明,从而解决问题【详解】解:如图,连接,在中,由勾股定理得,(米,(平方米),(元,改造
18、该区域需要花费6600元【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键是作辅助线构造直角三角形3、见解析【分析】由于AB=5,只能画出以AB为腰的等腰三角形【详解】由于AB=5,则只能画出以AB为腰的等腰三角形,所画图如图、图、图(答案不唯一)【点睛】本题考查了网格中勾股定理的应用,等腰三角形的判定,关键是勾股定理的应用4、3【分析】根据平行线的性质以及角平分线的定义证明ADEAED,根据等角对等边,即可求得AE的长,在直角ABE中,利用勾股定理求得BE的长【详解】解:在矩形ABCD中,ADBC,ADBC10,ABCD6BC90,ADECED,ED平分AEC,AEDCED,AED
19、ADE,ADAE10,在RtABE中,根据勾股定理,得BE8,ECBCBE1082,在RtDCE中,根据勾股定理,得DE2,设点A到DE的距离为h,则ADCDDEh,h3答:点A到DE的距离为3【点睛】本题考查勾股定理的综合应用,熟练掌握平行线的性质、角平分线的定义三角形面积公式及勾股定理是解题关键5、(1)B90;(2)P、Q两点之间的距离为【分析】(1)如果三角形的三边长a,b,c满足a2+b2c2,那么这个三角形就是直角三角形依据勾股定理的逆定理进行判断即可;(2)依据运动时间和运动速度,即可得到BP和BQ的长,再根据勾股定理进行计算,即可得到PQ的长【详解】解:(1)AB7cm,AC25cm,BC24cm,AB2+BC2625AC2,ABC是直角三角形且B90;(2)运动2s时,AP122(cm),BQ2612(cm),BPABAP725(cm),RtBPQ中,P、Q两点之间的距离为13cm【点睛】本题主要考查了勾股定理的逆定理和勾股定理,解题的关键在于能够根据题意求出B90