《七年级数学人教版下册期末总复习学案.doc》由会员分享,可在线阅读,更多相关《七年级数学人教版下册期末总复习学案.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学人教版下学期期末总复习学案 第五章 相交线与平行线本章知识结构图:知识要点1、 在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,图1 1 3 4 2 与 互为邻补角。 + = 180; + = 180; + = 180; + = 180。4、两条直线相交所
2、构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ; = 。5、两条直线相交所成的角中,如果有一个是 直角或90时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图2所示,当 = 90时, 。图2 1 3 4 2 a b 垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。性质3:如图2所示,当 a b 时, = = = = 90。图3 a 5 7 8 6 1 3 4 2 b c 点到直线的距离:直线外一点到这条直线的垂
3、线段的长度叫点到直线的距离。6、同位角、内错角、同旁内角基本特征:在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角; 与 是同位角; 与 是同位角; 与 是同位角。在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。7、平行公理:经过直线外一点有且只有一条直线
4、与已知直线平行。图4 a 5 7 8 6 1 3 4 2 b c 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质1:两直线平行,同位角相等。如图4所示,如果ab,则 = ; = ; = ; = 。性质2:两直线平行,内错角相等。如图4所示,如果ab,则 = ; = 。性质3:两直线平行,同旁内角互补。如图4所示,如果ab,则 + = 180; + = 180。图5 a 5 7 8 6 1 3 4 2 b c 性质4:平行于同一条直线的两条直线互相平行。如果ab,ac,则。8、平行线的判定: 判定1:同位角相等,两直线平行。如图5所示,如果 = 或
5、= 或 = 或 = ,则ab。判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则ab 。判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180; + = 180,则ab。判定4:平行于同一条直线的两条直线互相平行。如果ab,ac,则。9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。10、平移:在平面内,将一个图形沿某个方向移动
6、一定的距离,图形的这种移动叫做平移变换,简称平移。平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。平移性质:平移前后两个图形中对应点的连线平行且相等;对应线段相等;对应角相等。例题与习题:一、对顶角和邻补角:1.如图所示,1和2是对顶角的图形有( )毛 图1-1A.1个 B.2个 C.3个 D.4个2如图1-1,直线AB、CD、EF都经过点O, 图中有几对对顶角。( )三、同位角、内错角和同旁内角的判断图3-11如图3-1,按各角的位置,下列判断错误的是( )(A)1与2是同旁内角 (B)3与4是内错角
7、(C)5与6是同旁内角 (D)5与8是同位角四、平行线的判定和性质:1.如图4-1, 若3=4,则 ;若ABCD,则 = 。2.已知两个角的两边分别平行,其中一个角为52,则另一个角为_.5如图4-3,EFGF,垂足为F,AEF=150,DGF=60。试判断AB和CD的位置关系,并说明理由。7如图4-5,CDBE,则2+3的度数等于多少?( )8如图4-6:ABCD,ABE=DCF,求证:BECF 图4-6图4-5五、平行线的应用:1.某人从A点出发向北偏东60方向走了10米,到达B点,再从B点方向向南偏西15方向走了10米,到达C点,则ABC等于( )A.45 B.75 C.105 D.13
8、52一位学员练习驾驶汽车,发现两次拐弯后,行驶方向与原来的方向相同,这两次的拐弯角度可能是( )A第一次向右拐50,第二次向左拐130 B第一次向左拐50,第二次向右拐50 C 第一次向左拐50,第二次向左拐130D第一次向右拐50,第二次向右拐503如图5-2,把一个长方形纸片沿EF折叠后,点D、C分别落在D、C的位置,若EFB65,则AED等于 4计算(图6-1)中的阴影部分面积。 图5-2图6-17.下列命题中,真命题的个数为( )个 一个角的补角可能是锐角; 两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离; 平面内,过一点有且只有一条直线与已知直线垂直; 平面内,过一
9、点有且只有一条直线与已知直线平行;3图8-1A.1 B.2 C.3 D.48已知:如图8-1,ADBC,EFBC,1=2。 求证:CDG=B.11如图8-4,在长方形ABCD中,ADB20,现将这一长方形纸片沿AF折叠,若使AB BD,则折痕AF与AB的夹角BAF应为多少度?第六章实数复习导学案 一、知识结构乘方开方 练习:1、8是 的平方根; 64的平方根是 ; ;64的立方根是 ; ; 的平方根是 。 2、大于而小于的所有整数为 几个基本公式:(注意字母的取值范围)= ; = = ; = ; = 练习:1、判断下列说法是否正确:1.实数不是有理数就是无理数。 ( )2.无限小数都是无理数。
10、 ( )3.无理数都是无限小数。 ( )4.带根号的数都是无理数。 ( ) 5.两个无理数之和一定是无理数。 ( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。 ( )7.平面直角坐标系中的点与有序实数对之间是一一对应的。( )2、把下列各数中,有理数为 ;无理数为 (相邻两个3之间的7逐渐加1个)2、(1) (2) (3) 四、知识提高1、已知,(1) ;(2) ; (3)0.03的平方根约为 ;(4)若,则 练习:已知,求(1) ; (2)3000的立方根约为 ;(3),则 2、若,则的取值范围是 4、已知的小数部分为,的小数部分为,则 五、当堂反馈1、下列说法
11、正确的是( )A、的平方根是 B、表示6的算术平方根的相反数C、 任何数都有平方根 D、一定没有平方根2、若,则 5、绝对值+根号+平方6、如果一个数的平方根是和,求这个数第七章 平面直角坐标系本章知识结构图:知识要点1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标
12、和纵坐标,记作P(a,b)。5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。6、各象限点的坐标特点第一象限的点:横坐标 0,纵坐标 0;第二象限的点:横坐标 0,纵坐标 0;第三象限的点:横坐标 0,纵坐标 0;第四象限的点:横坐标 0,纵坐标 0。7、坐标轴上点的坐标特点x轴正半轴上的点:横坐标 0,纵坐标 0;x轴负半轴上的点:横坐标 0,纵坐标 0;y轴正半轴上的点:横坐标 0,纵坐标 0;y轴负半轴上的点:横坐标 0,纵坐标 0;坐标原点:横坐标 0,纵坐标 0。(填“”、“0的负整数解是_4、
13、已知关于x的不等式ax2的解集在数轴上的表示如图所示,则a的取值为_5若,则下列不等式成立的是( )A B C D6如果ab,c0,那么下列不等式成立的是( )(A) acbc; (B) cacb; (C) acbc; (D) 7、对不等式组(a、b是常数),下列说法正确的是( )A、当a3 B. C.3 D.13若不等式组有解,则a的取值范围是( )A.a1. B.a1. C a1. D.a1.14不等式组的解是,那么的值等于三、不等式(组)的实际问题应用1为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:
14、00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过每月总电量的百分之几时,使用“峰谷”电合算?解:设当“峰电”用量占每月总用电量的百分率为x时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1x)0.53y.解得x89答:当“峰电”用量占每月总用电量的89时,使用“峰谷”电合算2.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多
15、少?解:设从甲地到乙地的路程大约是x公里,依题意,得10+51.210+1.2(x-5)17.2解得10x11 答:从甲地到乙地的路程大于10公里,小于或等于11公里.(分配问题)3、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具不足3件,问小朋友的人数有多少人,玩具有多少个?设:一共有X个小朋友,则玩具总数=3X+4件。 第二次分的时候,前面X-1个小朋友每人得到4件,则一共有4(X-1)=4X-4件。 余下的不足3件,也就是 0(3X+4)-(4X-4)3 化简得 0-X+8X5 因为小朋友的人数为整数,所以X的取值有2个,分别是6人和7人。 当
16、6个小朋友时,玩具总数22件,前5个每人分4件,最后1人得2件; 当7个小朋友时,玩具总数25件,前6个每人分4件,最后1人得1件。(比较问题)4、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社?设有X名学生去旅游。则500*2+0.7*500X=0.8*500(X+2)解得X=4所以,当学生人数少于4人时,乙旅行社便宜。当学生人数等于4人时,甲乙旅行社一样便宜。当学生人数大于4人时,甲旅行
17、社便宜。(工程问题)5.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务? 设以后每天至少加工x个零件,才能在规定的时间内超额完成任务,根据题意列方程:3*24+(15-3)*x40812x336x28答;以后每天至少加工28个零件,才能在规定时间内超额完成任务。(增减问题)6、几个同学合影,每人交0.70元,一张底片0.68元,扩印一张相片0.5元,每人分一张,将收来的钱尽量用完,这张照片上的同学至少有多少个?0.68+0.5x=0.7x0.68=0.2x3.4=x所以至少要4个人(数字问题)7.有一个两位数,其十
18、位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数 分析:这题是一个数字应用题,题目中既含有相等关系,又含有不等关系,需运用不等式的知识来解决。题目中有两个主要未知数-十位上的数字与个位上的数;一个相等关系:个位上的数=十位上的数+2,一个不等关系:20原两位数40。 解法(1):设十位上的数为x, 则个位上的数为(x+2), 原两位数为10x+(x+2), 由题意可得:2010x+(x+2)40, 解这个不等式得,1 x3 , x为正整数, 1 x3 的整数为x=2或x=3, 当x=2时, 10x+(x+2)=24, 当x=3时, 10x+(x+2)=35, 答:这个两
19、位数为24或35。方案选择与设计8.已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?解:(1)=5x+3600依题意得解之,得40x44.x为整数,x=40,41,4
20、2,43,44.(2) 又y=544+3600=3820或Y=4450+3645=3820服装厂在生产这批服装中,当生产N型号44套,M型号36套时,所获利润最多,最多是3820元9某工厂计划生产两种产品共10件,其生产成本和利润如下表:种产品种产品成本(万元件)35利润(万元件)12(1)若工厂计划获利14万元,问两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?哪种方案获利最大?并求最大利润.解:(1)设生产A种产品x件,则生产B种产品(10x)件x+2(10x)=14,x=6。10x=10-8=4。应生产A种产品8件,B种产品2件。
21、(2)设应生产A种产品x件,则生产B种产品有10x件,根据题意,得3x6。x为整数,x=3,4,5有3种方案: A产品3件, B产品7件;A产品4件, B产品6件;A产品5件,B产品5件(3)当x=3时,z最大,最大利润z=3 172=17。所以当生产A产品3件、B产品7件时 ,可获得最大利润17万元。10某房地产开发公司计划建A、B两种户型的住房共80套,已知该公司所筹集的资金不少于2090万元,但不超过2096万元,且所筹集资金全部用于建房,两种户型的建房成本和售价如下表:户型AB成本(万元/套)2528售价(万元/套)3034(1)试求该公司对这两种户型住房将有哪几种建房方案;(2)试问
22、该公司将如何建房,才能使获得的利润最大;(3)若根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(),且所建的两种住房可全部售出试问该公司又将如何建房,才能使获得的利润最大。(注:利润=售价成本)解:(1)设公司建A户型x套,则建B户型(80-x)套,由题意得: 209025x+28(80-x )2096解得:48x50 x取整数,x=48、49、50。该公司有三种建房方案:A户型:48套,B户型32套; A户型:49套,B户型31套;A户型:50套,B户型30套。(2)每套A户型获利:3025=5万元,每套B户型获利:3428=6万元。每套B户型获利每套A户型获利,
23、方案一获利最大。即建48套A户型,32套B户型时获利最大。(3)由题意得:A户型住房的售价提高a万元后:每套A户型获利(5+a)万元,每套B户型仍获利6万元。存在三种情况:5+a6,即a1时,方案一获利最大;5+a=6, 即a=1时,三种方案获利一样多;5+a6,即a1时,方案三获利最大。第十章 数据的收集、整理与描述本章知识结构图知识要点1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。4、抽样调查简称抽查,它只抽取一部分对
24、象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量 。5、画频数直方图的步骤:计算数差(最大值与最小值的差);确定组距和组数;列频数分布表;画频数直方图 。例题与习题:一、选择题1.要调查下面几个问题,你认为应作为抽样调查的是( ) 调查一个村庄所有家庭的收入; 调查某电视剧的收视率; 调查一批炮弹的杀伤力; 调查一片森林树的棵数有多少?(A); (B); (C); (D)、4.要了解某地农户的用电情况, 调查了部分农户在某一个月中用电情况: 用电15度的有3户,用电20度的
25、有5户,用电30度的有7户,那么该月平均每户用电约( ) (A)23.7度 (B)21.6度 (C)20度 (D)22.6度6.为了了解七年级的学生的体能情况, 抽取了某校该年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画成统计图(如图), 从左到右前三个小组所占的百分比分别为10%,30%,40%,第一小组若有5人,则第四小组的人数是( ) (A)8 (B)9 (C)10 (D)11二、填空题1.某出租车公司在“五一”黄金周期间,平均每天的营业额为5万元,由此推断5月份该公司的总营业额为531=155(万元),你认为是否合理?答:_.2为了考查一批光盘的质量,从中抽取500张进行检测,在这个问题中总体是 ;个体是 ;样本是 。4某校初三年级在期中考试后,从全年级200名学生中抽取20名学生的考试成绩作为一个样本,用来分析全年级的考试情况,这个问题中的样本是_。5从鱼池中不同地方抽出30条鱼作