《2022年平面与平面的位置关系 .pdf》由会员分享,可在线阅读,更多相关《2022年平面与平面的位置关系 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 / 8平面和平面的位置关系一、知识梳理1.两个平面的位置关系(1)两个平面平行:如果两个平面没有公共点,我们就说这两个平面互相平行(2)两个平面相交:如果两个平面有公共点,它们就相交于一条过该公共点的直线,称这两个平面相交(3)两个平面的位置关系只有两种:两个平面平行:没有公共点;两个平面相交:有一条公共直线(4)两个平面平行的画法:画两个互相平行的平面时,要注意使表示平面的两个平行四边形的对应边平行(图 1,而不应画成图2 那样)平面和平行,记作/图 1 图 2 2.两个平面平行的判定工人师傅将水平仪在桌面上交叉放置两次,如果水平仪的气泡都在中央,就能判断桌面是水平的。该检测原理就是:(
2、1)两个平面平行的判定定理: 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行用符号表示为:若,ababA,且/,/,ab则/。 (线线平行,则线面平行)。(2)垂直直于同一直线的两平面平行。(3)平行于同一平面的两平面平行。3.两个平面平行的性质(1)两平行平面被第三个平面所截,则交线互相平行。(2)直线垂直于两平行平面中的一个,必垂直于另一个。(3)过平面外一点,有且只有一个平面与之平行。(4)两平面平行,则在其中一个平面内的所有直线必平行于另一个平面。(5)两平行平面中的一个垂直于一个平面,则另一个也垂直于这个平面。4.两个平行平面的距离(1)两个平面的公垂线及公垂线段
3、:直线 a与两个平面 、都垂直,我们把与两个平行平面都垂直的直线称作 两个平行平面的公垂线。公垂线夹在两个平行平面之间的线段称为这两个平行平面的公垂线段。注意:两个平面不平行时,由于不可能存在同时与它们垂直的直线,因此此时没有公垂线可言,换句话说,当论及公垂线时,就隐含着两个平面平行。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 8 页 - - - - - - - - - 2 / 8(2)两个平行平面的距离我们把公垂线段的长度叫做两个平行平面的距离说明:两个平行平面的公
4、垂线段都相等5、二面角半平面:平面内的一条直线把这个平面分成两部分,其中的每一部分都叫做半平面 。(1) 二面角的定义: 一条直线和由这条直线出发的两个半平面所组成的图形叫做二面角这条直线叫做二面角的棱,这两个半平面叫做二面角的面棱为AB ,面为,的二面角,记作二面角AB(2) 、二面角的画法:分直立式与平卧式两种直立式平卧式(3)、二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角如图,二面角l,AOB是二面角的平面角注意:i)二面角的平面角的范围是0,,当两个半平面重合时,平面角为0;当两个半平面合成一个平面时,平面角为1
5、80。ii. )求解二面角问题的关键是确定平面角的位置,需抓住“二面角的平面角”的三个要素:确定二面角的棱上一点;经过这点分别在两个面内引射线;所引的射线都垂直于棱。iii. )作二面角的平面角的常用方法:点P 在棱上定义法点 P 在一个半平面上三垂线(逆)定理法点 P 在二面角内垂面法6、两平面垂直:如果两个平面所成的二面角是直二面角,我们就说这两个平面互相垂直。思考:为什么教室的门转到任何位置时,门所在平面都与地面垂直?通过观察可以发现,门在转动的过程中,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - -
6、- - - - - 第 2 页,共 8 页 - - - - - - - - - 3 / 8门轴始终与地面垂直。(1)两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直符号语言:若AB,AB, 则注意:由符号语言知:判定两个平面垂直时需两个条件,在解题时请特别注意,不要漏掉条件。(2)两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,符号表示:,l ABABl B若为垂足,则 AB二、 【典型例题 】例 1. 如图,在正方体1AC中,MNP、分别是棱11111C CBCC D、的中点。求证:平面/MNP平面1A BD
7、例 2、如果两个平面互相垂直,那么经过第一个平面的一点垂直于第二个平面的直线,在第一个平面内。已知:,,ppa a,求证:a。例 3. 如图,在正方体/ABCDA B C D中:(1)求二面角/DABD的大小;(2)求二面角/AABD的大小 . ACCDBDBA名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 8 页 - - - - - - - - - 4 / 8例 4. 如图,平面角为锐角的二面角EF,AEF,AG,45GAE,若 AG 与所成角为30,求二面角EF的平面
8、角例 5正方体 ABCD1111DCBA中, E、F 分别是11,CCAA的中点(1)求证:平面11EB D平面 FBD, (2)若正方体棱长为a,求平面DEB1与平面 FBD 间的距离。例 6、在长方体1AC中,已知 AB=BC=a,1BB=b( ba)连结1BC,过1B作11BCEB交1CC于 E,交1BC于Q。求证: (1)1AC平 面11DEB; (2)求点1C到平面11EDB的距离。例 7、四棱锥ABCDP的底面是边长为a的正方形,PB面ABCD。()若面PAD与面ABCD所成的二面角为60,求这个四棱锥的体积;()证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90
9、。ABCDEFGOMA1B1C1D1O1ABCDA1C1B1D1EQ名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 8 页 - - - - - - - - - 5 / 8例 8、如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若aBNCM)20(a。()求MN的长; ()当a为何值时,MN的长最小;()当MN长最小时,求面MNA与面MNB所成的二面角的大小。ABCDEFNMPQ三、课堂练习1.二面角指的是
10、()A. 两个平面相交所组成的图形;B. 一个平面绕这个平面内的一条直线旋转所成的图形C. 从一个平面内一条直线出发的一个半平面与这个平面组成的图形D. 从一条直线出发的两个半平面所组成的图形2. 下列命题中错误的是()A. 平行于同一个平面的两个平面平行;B. 垂直于同一条直线的两个平面平行C. 一条直线与两个平行平面中的一个相交,那么这条直线必与另一个平面相交D. 垂直于同一个平面的两个平面平行3.二面角内一点到两个面的距离分别为6 和 8,两垂足间的距离为10,则这个二面角的大小是()A. 30B. 90C. 30或 150D. 60 或 1204. 设平面 /平面 ,直线 a,点 b,
11、则在 内过点 b 的所有直线中()A. 不一定存在与a 平行的直线B. 只有两条与a 平行的直线C. 存在无数条与a 平行的直线D. 存在唯一一条与a 平行的直线5. 自二面角内任意一点分别向两个面引垂线,则两垂线所成的角与二面角的平面角的关系是()A. 相等B. 互补C. 互余D. 无法确定6. 有下列四个命题:夹在两个平行平面间的线段中,较长的线段与平面所成的角较小;夹在两个平行平面间的所有线段与两个平面所成的角相等;夹在两个平行平面间的线段相等,则这两条线段必平行;夹在两个平行平面间的平行线段必相等其中的真命题是()A. B. C. D. 名师资料总结 - - -精品资料欢迎下载 - -
12、 - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 8 页 - - - - - - - - - 6 / 87. 下列命题中,错误的是()A. 若一直线垂直于一平面,则此直线必垂直于此平面内所有直线B. 若一个平面通过另一个平面的一条垂线,则这两个平面互相垂直C. 若一直线垂直于一个平面内的一条垂线,则此直线平行于这个平面D. 若平面内的一条直线和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直8. m、n 表示直线, 、表示平面,给出下列四个命题: =m,n,nm,则 ; ,=m,=n,则 mn , =m,则 m; m,
13、n,mn,则 其中正确命题为()A. 与B. 与C. 与D. 与9. 在三棱锥 ABCD 中,若 AD BC,BD AD , BCD 是锐角三角形,那么必有()A、平面 ABD 平面 ADC ;B、平面 ABD 平面 ABC C、平面 ADC 平面 BCD ;D、平面 ABC 平面 BCD 10.在两个互相垂直的平面的交线上,有两点A、B,AC 和 BD 分别是这两个平面内垂直于 AB 的线段, AC=6 ,AB=8 ,BD=24 ,则 C、D 间距离为 _。11. (1)当时 l,则 l 与的关系是;(2)当 , ,则与的关系是。12. 正四面体 P ABC(各棱都相等)的侧面PAB 与底面
14、 ABC 所成锐角的余弦值为_ 13. 如图,过 S引三条长度相等但不共面的线段SA、SB、SC,且 ASB= ASC=60,BSC=90,求证:平面ABC 平面 BSC。14. 如图, AB 是圆 O 的直径, C 是圆周上一点,PA平面 ABC 。(1)求证:平面PAC平面 PBC;(2)若 D 也是圆周上一点,且与C 分居直径 AB 的两侧,试写出图中所有互相垂直的各对平面。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 8 页 - - - - - - - - -
15、7 / 8四、课后作业1过正方形 ABCD 的顶点 A 作线段 AP平面 ABCD ,且 AP=AB ,则平面 ABP 与平面 CDP 所成的二面角的度数是()A30B45C60D 902已知 E、F 分别是正方体ABCD A1B1C1D1的棱 BC,CC1的中点,则截面AEFD1与底面 ABCD 所成二面角的正弦值是()A32B32C35D3223在空间,下列命题中正确的是()A若两直线a,b 与直线 l 所成的角相等,那么abB若两直线a,b 与平面所成的角相等,那么abC如果直线l 与两平面,所成的角都是直角,那么/D若平面与两平面,所成的二面角都是直二面角,那么/4在下列条件中,可判定
16、平面与平面平行的是()A、都垂直于平面;B内不共线的三个点到的距离相等Cl、m 是内两条直线,且l,m; Dl、m 是两异面直线且l,m,且 l,m5已知二面角AAAAl内的射影在则的距离为到为, 1,60到平面的距离是()A33B1 C332D216平面的是那么点点平面PQlPQlQPl,()A充要条件B充分不必要条件C必要不充分条件D既不充分又不必要条件7 RtABC 的斜边在平面 内,直角顶点 C 是 外一点,AC、BC 与 所成角分别为 30和 45 ,则平面ABC 与 所成角为. 8 ABC 的三边长分别是3,4,5,P 为ABC 所在平面外一点,它到三边的距离都等于2,则 P到平面
17、的距离为. 9已知、是两个平面,直线,ll若以ll中的两个为条件,另一名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 8 页 - - - - - - - - - 8 / 8个为结论,则能构成正确命题的是. 10如图:设ABC 内接于 O,其中 AB 为 O 的直径,PA平面 ABC ,,3:4:,65cosPBPAABC求直线 PB 和平面 PAC 所成角的大小。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 8 页 - - - - - - - - -