高一数学必修1知识点总结及练习题.doc

上传人:模** 文档编号:34109597 上传时间:2022-08-12 格式:DOC 页数:5 大小:764KB
返回 下载 相关 举报
高一数学必修1知识点总结及练习题.doc_第1页
第1页 / 共5页
高一数学必修1知识点总结及练习题.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《高一数学必修1知识点总结及练习题.doc》由会员分享,可在线阅读,更多相关《高一数学必修1知识点总结及练习题.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、期中考复习第一章 集合与函数概念(10,11班)一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(P1,1)(2) 元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y(解题时,最后注意检验是否满足互异性)研究p3,7、8;(3) 元素的无序性: 如:a,b,c和a,c,b是表示同一个集合3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2) 集合的表示方法:列举法与描述法。u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N

2、*或 N+ 整数集Z 有理数集Q 实数集R 2,集合的表示法(研究P2,8;)1) 列举法:a,b,c2) 描述法:M=y|y=x2-2x+1,xR M=x|y=x2-2x+1,xR(注意代表元素!)(P5,2)3) Venn图:(研究P5,4/7/9)4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合例:x|x2=5(研究P3,2)二、集合间的基本关系(切记,有包含关系要优先考虑空集)(P3、10)1.“包含”关系子集(最高次项前面有参数时,要讨论它与0的关系)注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合

3、。2“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等”即: 任何一个集合是它本身的子集。AA真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)如果 AB, BC ,那么 AC 如果AB 同时 BA 那么A=B规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算(p3,6;P4,4/7/10,P5,10;P6,5/8)运算类型交 集并 集补 集定 义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即

4、AB=x|xA,且xB由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|xA,或xB)设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)SA记作,即CSA=韦恩图示SA性 质AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 例题:1.下列四组对象,能构成集合的是 ( )A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合a

5、,b,c 的真子集共有 个 3.若集合M=y|y=x2-2x+1,xR,N=x|x0,则M与N的关系是 .4.设集合A=,B=,若AB,则的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。7.已知集合A=x| x2+2x-8=0, B=x| x2-5x+6=0, C=x| x2-mx+m2-19=0, 若BC,AC=,求m的值(注意:解不等式时,乘以除以一个数时,注意讨论它的符号,如果是负数,记住变号。)二、函数的有关概念 定义(P9,1/;P10,1)1定义域:能使函数式有意义的

6、实数x的集合称为函数的定义域。(1)具体函数的定义域时列不等式组的主要依据是(P30,9;P37,2/4)(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.抽象函数定义域:(P9,6;P21,5;)u 相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);u 定义域一致 (P9,3时具备)2值域 : 先

7、考虑其定义域(P9,7/8;P10,10/6;P14,6)(1)观察法 (遇见上下都有x,优先分离常数)(2)配方法(3)代换法2、函数的解析表达式(P10,9、4)求函数的解析式的主要方法有:1) 凑配法已知fx2,求f(x)2) 待定系数法已知一次函数f(x)满足f(f(x)4x1,求f(x)3) 换元法已知f(2)x4,求f(x)(注意新换元的范围)4) 消参法(函数方程法)已知:3. 函数图象知识归纳A、 图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换(P10,2)4区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间5映射(箭射靶,且箭要全射出去)定义:(

8、P11,1/3/5/6/7/9/10)对于映射f:AB来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。一一映射:一对一,且集合B当中没有多余的元素(P11,8)6.分段函数 (一般画图处理题目)(P11,9;P12,7;P24,10)(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集注意:分段函数单调性,除了保证每一段的单调性,还要保证最值之间的关系,即整体的单调

9、性。(补充:复合函数如果y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。二函数的性质1.函数的单调性(局部性质)(P12,1/2;P14,2/3)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性

10、是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:(P14,9/8;P15,9;P30,10) 任取x1,x2D,且x110a10a1定义域x0定义域x0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)注意:对于y=loga g(x),若u=g(x)为二次函数,先画图,取x轴上半部的图像,再结合图像解题。(一定注意先求定义域,真数大于0)f(

11、x)= 的图像要记住,若有f(a)=f(b),则a,b互为倒数。(三)幂函数(a=-1,1/2,2,3的图像必须掌握)(1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴(p22,1)总结:幂函数在第一象限为减函数,则;为增函数,则;幂函数为奇函数,则a为奇数,为偶函数则a为偶数(p22,9) 第三章 函数的应用即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点: 二次函数(1)根的分布:画图!看四点、开口方向,对称轴,端点值的符号。(注意隐含条件,和经过的定点)没有隐含条件时,切记每一个都要考虑。(2)两个正根,两个复根,一正一负根时一般用维达定理.(除了一正一负隐含了德塔大于零,其他时候不要忘记德塔)(3)若已知一个根,代入求出参数,再解方程,检验另外一根是否满足条件。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁