《2019年贵州省铜仁市中考数学试卷.doc》由会员分享,可在线阅读,更多相关《2019年贵州省铜仁市中考数学试卷.doc(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019年贵州省铜仁市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1(4分)2019的相反数是()ABC|2019|D20192(4分)如图,如果13,260,那么4的度数为()A60B100C120D1303(4分)今年我市参加中考的学生约为56000人,56000用科学记数法表示为()A56103B5.6104C0.56105D5.61044(4分)某班17名女同学的跳远成绩如下表所示:成绩(m)1.501.601.651.701.751.801.851.90人数23234111这些女同学跳远成绩的众数和中位数分别是()A1.70,1.75B1.75,1.70C1.70,1
2、.70D1.75,1.7255(4分)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A360B540C630D7206(4分)一元二次方程4x22x10的根的情况为()A有两个相等的实数根B有两个不相等的实数根C只有一个实数根D没有实数根7(4分)如图,D是ABC内一点,BDCD,AD7,BD4,CD3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A12B14C24D218(4分)如图,四边形ABCD为菱形,AB2,DAB60,点E、F分别在边DC、BC上,且CECD,CFCB,则SCEF()AB
3、CD9(4分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC6,BD8,P是对角线BD上任意一点,过点P作EFAC,与平行四边形的两条边分别交于点E、F设BPx,EFy,则能大致表示y与x之间关系的图象为()ABCD10(4分)如图,正方形ABCD中,AB6,E为AB的中点,将ADE沿DE翻折得到FDE,延长EF交BC于G,FHBC,垂足为H,连接BF、DG以下结论:BFED;DFGDCG;FHBEAD;tanGEB;SBFG2.6;其中正确的个数是()A2B3C4D5二、填空题:(本大题共8个小题,每小题4分,共32分)11(4分)因式分解:a29 12(4分)小刘和小李参加
4、射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是S小刘20.6,S小李21.4,那么两人中射击成绩比较稳定的是 ;13(4分)如图,四边形ABCD为O的内接四边形,A100,则DCE的度数为 ;14(4分)分式方程的解为y 15(4分)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为 16(4分)如图,在ABC中,D是AC的中点,且BDAC,EDBC,ED交AB于点E,BC7cm,AC6cm,则AED的周长等于 cm17(4分)如果不等式组的解
5、集是xa4,则a的取值范围是 18(4分)按一定规律排列的一列数依次为:,(a0),按此规律排列下去,这列数中的第n个数是 (n为正整数)三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19(10分)(1)计算:|+(1)2019+2sin30+()0(2)先化简,再求值:(),其中x220(10分)如图,ABAC,ABAC,ADAE,且ABDACE求证:BDCE21(10分)某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不
6、完整的统计图(图(1)和图(2):(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?22(10分)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45和60,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,1.732)四、(本大题满分12分)
7、23(12分)如图,一次函数ykx+b(k,b为常数,k0)的图象与反比例函数y的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3(1)求一次函数的表达式;(2)求AOB的面积;(3)写出不等式kx+b的解集五、(本大题满分12分)24(12分)如图,正六边形ABCDEF内接于O,BE是O的直径,连接BF,延长BA,过F作FGBA,垂足为G(1)求证:FG是O的切线;(2)已知FG2,求图中阴影部分的面积六、(本大题满分14分)25(14分)如图,已知抛物线yax2+bx1与x轴的交点为A(1,0),B(2,0),且与y轴交于C点(1)求该抛物线的表达式;
8、(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),MEx轴,MFy轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由(3)已知点P是直线yx+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标2019年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1(4分)2019的相反数是()ABC|2019|D2019【考点】14:相反数;15:绝对值菁优网版权所有【分析】根据相反数的意义,直接可得结论【解答】解:2019的相反数是2019,故选:
9、D【点评】本题考查了相反数的意义理解a的相反数是a,是解决本题的关键2(4分)如图,如果13,260,那么4的度数为()A60B100C120D130【考点】JB:平行线的判定与性质菁优网版权所有【分析】根据平行线的判定推出两直线平行,根据平行线的性质得出25即可求出答案【解答】解:13,ab,5260,418060120,故选:C【点评】本题考查了平行线的性质和判定的应用,能求出ab是解此题的关键3(4分)今年我市参加中考的学生约为56000人,56000用科学记数法表示为()A56103B5.6104C0.56105D5.6104【考点】1I:科学记数法表示较大的数菁优网版权所有【分析】科
10、学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【解答】解:将56000用科学记数法表示为:5.6104故选:B【点评】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4(4分)某班17名女同学的跳远成绩如下表所示:成绩(m)1.501.601.651.701.751.801.851.90人数23234111这些女同学跳远成绩的众数和中位数分别是()A1.
11、70,1.75B1.75,1.70C1.70,1.70D1.75,1.725【考点】W4:中位数;W5:众数菁优网版权所有【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个【解答】解:由表可知,1.75出现次数最多,所以众数为1.75;由于一共调查了2+3+2+3+1+1+117人,所以中位数为排序后的第9人,即:170故选:B【点评】考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和
12、偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数5(4分)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A360B540C630D720【考点】L3:多边形内角与外角菁优网版权所有【分析】根据多边形内角和定理:(n2)180,无论分成两个几边形,其内角和都能被180整除,所以不可能的是,不能被180整除的【解答】解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630故选:
13、C【点评】此题主要考查了多边形内角和定理,题目比较简单(n2)180,无论分成两个几边形,其内角和都能被180整除6(4分)一元二次方程4x22x10的根的情况为()A有两个相等的实数根B有两个不相等的实数根C只有一个实数根D没有实数根【考点】AA:根的判别式菁优网版权所有【分析】先求出的值,再根据0方程有两个不相等的实数根;0方程有两个相等的实数;0方程没有实数根,进行判断即可【解答】解:(2)244(1)200,一元二次方程4x22x10有两个不相等的实数根故选:B【点评】此题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)0方程有两个相等的实
14、数;(3)0方程没有实数根7(4分)如图,D是ABC内一点,BDCD,AD7,BD4,CD3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A12B14C24D21【考点】KX:三角形中位线定理菁优网版权所有【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EHFGBC,EFGHAD,然后代入数据进行计算即可得解【解答】解:BDCD,BD4,CD3,BC5,E、F、G、H分别是AB、AC、CD、BD的中点,EHFGBC,EFGHAD,四边形EFGH的周长EH+GH+FG+EFAD+BC,又AD7,四边形EFGH的周长7
15、+512故选:A【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键8(4分)如图,四边形ABCD为菱形,AB2,DAB60,点E、F分别在边DC、BC上,且CECD,CFCB,则SCEF()ABCD【考点】KM:等边三角形的判定与性质;L8:菱形的性质;S9:相似三角形的判定与性质菁优网版权所有【分析】根据菱形的性质以及已知数据可证得CEF为等边三角形且边长为,代入等边三角形面积公式即可求解【解答】解:四边形ABCD为菱形,AB2,DAB60ABBCCD2,DCB60CECD,CFCBCECFCEF为等边三角形SCEF故选:D【
16、点评】本题主要考查了菱形的性质以及等边三角形的判定与性质,由已知条件证明三角形CEF是等边三角形是解题的关键9(4分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC6,BD8,P是对角线BD上任意一点,过点P作EFAC,与平行四边形的两条边分别交于点E、F设BPx,EFy,则能大致表示y与x之间关系的图象为()ABCD【考点】E7:动点问题的函数图象菁优网版权所有【分析】由平行四边形的性质可知BO为ABC的中线,又EFAC,可知BP为BEF的中线,且可证BEFBAC,利用相似三角形对应边上中线的比等于相似比,得出函数关系式,判断函数图象【解答】解:当0x4时,BO为ABC的中线
17、,EFAC,BP为BEF的中线,BEFBAC,即,解得y,同理可得,当4x8时,y(8x)故选:D【点评】本题考查了动点问题的函数图象关键是根据图形,利用相似三角形的性质得出分段函数关系式10(4分)如图,正方形ABCD中,AB6,E为AB的中点,将ADE沿DE翻折得到FDE,延长EF交BC于G,FHBC,垂足为H,连接BF、DG以下结论:BFED;DFGDCG;FHBEAD;tanGEB;SBFG2.6;其中正确的个数是()A2B3C4D5【考点】KD:全等三角形的判定与性质;LE:正方形的性质;PB:翻折变换(折叠问题);S9:相似三角形的判定与性质;T7:解直角三角形菁优网版权所有【分析
18、】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可【解答】解:正方形ABCD中,AB6,E为AB的中点ADDCBCAB6,AEBE3,ACABC90ADE沿DE翻折得到FDEAEDFED,ADFD6,AEEF3,ADFE90BEEF3,DFGC90EBFEFBAED+FEDEBF+EFBDEFEFBBFED故结论正确;ADDFDC6,DFGC90,DGDGRtDFGRtDCG结论正确;FHBC,ABC90ABFH,FHBA90EBFBFHAEDFHBEAD结论正确;RtDFGRtDCGFGCG设FGCGx,则BG6x,EG3+x在RtBEG中,由勾股定理得:32+(6x)2(3+x)2
19、解得:x2BG4tanGEB故结论正确;FHBEAD,且BH2FH设FHa,则HG42a在RtFHG中,由勾股定理得:a2+(42a)222解得:a2(舍去)或aSBFG42.4故结论错误;故选:C【点评】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强二、填空题:(本大题共8个小题,每小题4分,共32分)11(4分)因式分解:a29(a+3)(a3)【考点】54:因式分解运用公式法菁优网版权所有【分析】a29可以写成a232,符合平方差公式的特点,利用平方差公式分解即可【解答】解:a29(a+3)(a3)【点
20、评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键12(4分)小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是S小刘20.6,S小李21.4,那么两人中射击成绩比较稳定的是小刘;【考点】W7:方差菁优网版权所有【分析】根据方差的意义即可求出答案【解答】解:由于S小刘2S小李2,且两人10次射击成绩的平均值相等,两人中射击成绩比较稳定的是小刘,故答案为:小刘【点评】本题考查方差的意义,解题的关键是熟练运用方差的意义,本题属于基础题型13(4分)如图,四边形ABCD为O的内接四边形,A100,则DCE的度数为100;【考点】M6:圆内接四边形的性质菁
21、优网版权所有【分析】直接利用圆内接四边形的性质:外角等于它的内对角得出答案【解答】解:四边形ABCD为O的内接四边形,DCEA100,故答案为:100【点评】考查圆内接四边形的外角等于它的内对角14(4分)分式方程的解为y3【考点】B3:解分式方程菁优网版权所有【分析】分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解【解答】解:去分母得:5y3y6,解得:y3,经检验y3是分式方程的解,则分式方程的解为y3故答案为:3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验15(4分)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去
22、年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为20%【考点】AD:一元二次方程的应用菁优网版权所有【分析】一般用增长后的量增长前的量(1+增长率),今年年要投入资金是3(1+x)万元,在今年的基础上再增长x,就是明年的资金投入5(1+x)(1+x),由此可列出方程5(1+x)27.2,求解即可【解答】解:设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)27.2,解得:x10.220%,x22.2(不合题意舍去)答:这两年中投入资金的平均年增长率约是20%故答案是:20%【点评】本题考查了一元二次方程中增长率的
23、知识增长前的量(1+年平均增长率)年数增长后的量16(4分)如图,在ABC中,D是AC的中点,且BDAC,EDBC,ED交AB于点E,BC7cm,AC6cm,则AED的周长等于10cm【考点】KP:直角三角形斜边上的中线;KQ:勾股定理;KX:三角形中位线定理菁优网版权所有【分析】由线段垂直平分线的性质得出ABBC7cm,由三角形中位线定理得出ED的长,即可得出答案【解答】解:D是AC的中点,且BDAC,ABBC7cm,ADAC3cm,EDBC,AEBEAB3.5cm,EDBC3.5cm,AED的周长AE+ED+AD10cm故答案为:10【点评】本题考查的是等腰三角形的判定和性质、平行线的性质
24、,掌握等腰三角形的判定定理、性质定理以及平行线的性质定理是解题的关键17(4分)如果不等式组的解集是xa4,则a的取值范围是a3【考点】CB:解一元一次不等式组菁优网版权所有【分析】根据口诀“同小取小”可知不等式组的解集,解这个不等式即可【解答】解:解这个不等式组为xa4,则3a+2a4,解这个不等式得a3故答案a3【点评】此题实质是解一元一次不等式组解答时要遵循以下原则:同大取教大,同小取较小,小大大小中间找,大大小小解不了18(4分)按一定规律排列的一列数依次为:,(a0),按此规律排列下去,这列数中的第n个数是(1)n(n为正整数)【考点】37:规律型:数字的变化类;42:单项式菁优网版
25、权所有【分析】先确定正负号与序号数的关系,再确定分母与序号数的关系,然后确定a的指数与序号数的关系【解答】解:第1个数为(1)1,第2个数为(1)2,第3个数为(1)3,第4个数为(1)4,所以这列数中的第n个数是(1)n故答案为(1)n【点评】本题考查了规律型:数字的变化类:寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19(10分)(1)计算:|+(1)2019+2sin30+()0(2)先化简,再求值:(),其中x2【考点】2C:实数的运算;6D:分式的化简
26、求值;6E:零指数幂;T5:特殊角的三角函数值菁优网版权所有【分析】(1)根据绝对值、幂的乘方、特殊角的三角函数值、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题【解答】解:(1)|+(1)2019+2sin30+()0+(1)+2+1+(1)+1+1;(2)(),当x2时,原式【点评】本题考查分式的化简求值、零指数幂、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法20(10分)如图,ABAC,ABAC,ADAE,且ABDACE求证:BDCE【考点】KD:全等三角形的判定与性质菁优网版权所有【分析】先证明CAEBAD,
27、结合已知可得ABDACE,从而BDCE【解答】证明:ABAC,ADAE,BAE+CAE90,BAE+BAD90,CAEBAD又ABAC,ABDACE,ABDACE(ASA)BDCE【点评】本题主要考查了全等三角形的判定和性质,证明线段相等的方法一般是先证明与之有关的两个三角形全等,根据全等三角形的性质再说明线段相等21(10分)某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2):(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班
28、团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?【考点】VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法菁优网版权所有【分析】(1)用排球组的人数除以它所占的百分比即可得到全班人数,计算出足球组人数,然后补全频数分布直方图;(2)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好恰好有1人选修排球、1人选修羽毛球所占结果数,然后根据概率公式求解【解答】解:(1)该班的总人数为1224%50(人),足球科目人数为5014%7(人),补全图形如下:(2
29、)设排球为A,羽毛球为B,乒乓球为C画树状图为:共有12种等可能的结果数,其中有1人选修排球、1人选修羽毛球的占4种,所以恰好有1人选修排球、1人选修羽毛球的概率,【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率也考查条形统计图与扇形统计图22(10分)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45和60,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求
30、h(结果取整数,1.732)【考点】TA:解直角三角形的应用仰角俯角问题菁优网版权所有【分析】由三角函数得出AMh,BMh,由AM+BMAB10,得出方程h+h10,解方程即可【解答】解:由题意得,PAB60,PBA45,AB10km,在RtAPM和RtBPM中,tanPAB,tanPBA1,AMh,BMh,AM+BMAB10,h+h10,解得:h1556;答:h约为6km【点评】本题考查的是解直角三角形的应用仰角俯角问题;由三角函数得出关于h的方程是解题的关键四、(本大题满分12分)23(12分)如图,一次函数ykx+b(k,b为常数,k0)的图象与反比例函数y的图象交于A、B两点,且与x轴
31、交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3(1)求一次函数的表达式;(2)求AOB的面积;(3)写出不等式kx+b的解集【考点】G8:反比例函数与一次函数的交点问题菁优网版权所有【分析】(1)根据题意得出A,B点坐标进而利用待定系数法得出一次函数解析式;(2)求出一次函数与x轴交点,进而利用三角形面积求法得出答案;(3)直接利用函数图象结合其交点得出不等式的解集【解答】解:(1)一次函数ykx+b(k,b为常数,k0)的图象与反比例函数y的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,3,解得:x4,y4,故B(4,3),A(3,4),
32、把A,B点代入ykx+b得:,解得:,故直线解析式为:yx1;(2)yx1,当y0时,x1,故C点坐标为:(1,0),则AOB的面积为:13+14;(3)不等式kx+b的解集为:x4或0x3【点评】此题主要考查了反比例函数与一次函数的交点问题以及待定系数法求一次函数解析式、三角形面积求法等知识,正确得出A,B点坐标是解题关键五、(本大题满分12分)24(12分)如图,正六边形ABCDEF内接于O,BE是O的直径,连接BF,延长BA,过F作FGBA,垂足为G(1)求证:FG是O的切线;(2)已知FG2,求图中阴影部分的面积【考点】KQ:勾股定理;M2:垂径定理;ME:切线的判定与性质;MM:正多
33、边形和圆;MO:扇形面积的计算菁优网版权所有【分析】(1)连接OF,AO,由ABAFEF,得到,求得ABFAFBEBF30,得到ABOF,求得OFFG,于是得到结论;(2)由,得到AOF60,得到AOF是等边三角形,求得AFO60,得到AO4,根据扇形的面积公式即可得到结论【解答】(1)证明:连接OF,AO,ABAFEF,ABFAFBEBF30,OBOF,OBFBFO30,ABFOFB,ABOF,FGBA,OFFG,FG是O的切线;(2)解:,AOF60,OAOF,AOF是等边三角形,AFO60,AFG30,FG2,AF4,AO4,AFBE,SABFSAOF,图中阴影部分的面积【点评】本题考查
34、了正多边形与圆,切线的判定,等边三角形的判定和性质,扇形的面积的计算,正确的作出辅助线是解题的关键六、(本大题满分14分)25(14分)如图,已知抛物线yax2+bx1与x轴的交点为A(1,0),B(2,0),且与y轴交于C点(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),MEx轴,MFy轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由(3)已知点P是直线yx+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标【考点】HF:二次函数综合题菁优网版权所
35、有【分析】(1)待定系数法将已知点的坐标分别代入得方程组并解方程组即可求得抛物线的表达式;(2)先求得C1(0,1),再由待定系数法求得直线C1B解析式yx+1,设M(t,+1),得S矩形MFOEOEOFt(t+1)(t1)2+,由二次函数性质即可得到结论;(3)以C、C1、P、Q为顶点的四边形为平行四边形要分两种情况进行讨论:C1C为边,C1C为对角线【解答】解:(1)将A(1,0),B(2,0)分别代入抛物线yax2+bx1中,得,解得:该抛物线的表达式为:yx2x1(2)在yx2x1中,令x0,y1,C(0,1)点C关于x轴的对称点为C1,C1(0,1),设直线C1B解析式为ykx+b,
36、将B(2,0),C1(0,1)分别代入得,解得,直线C1B解析式为yx+1,设M(t,+1),则 E(t,0),F(0,+1)S矩形MFOEOEOFt(t+1)(t1)2+,0,当t1时,S矩形MFOE最大值,此时,M(1,);即点M为线段C1B中点时,S矩形MFOE最大(3)由题意,C(0,1),C1(0,1),以C、C1、P、Q为顶点的四边形为平行四边形,分以下两种情况:C1C为边,则C1CPQ,C1CPQ,设P(m,m+1),Q(m,m1),|(m1)(m+1)|2,解得:m14,m22,m32,m40(舍),P1(4,3),Q1(4,5);P2(2,0),Q2(2,2);P3(2,2)
37、,Q3(2,0)C1C为对角线,C1C与PQ互相平分,C1C的中点为(0,0),PQ的中点为(0,0),设P(m,m+1),则Q(m,+m1)(m+1)+(+m1)0,解得:m10(舍去),m22,P4(2,0),Q4(2,0);综上所述,点P和点Q的坐标为:P1(4,3),Q1(4,5)或P2(2,0),Q2(2,2)或P3(2,2),Q3(2,0)或P4(2,0),Q4(2,0)【点评】本题属于中考压轴题类型,主要考查了待定系数法求一次函数、二次函数解析式,二次函数的最值运用,平行四边形性质等,解题关键要正确表示线段的长度,掌握分类讨论的方法声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/8/5 10:30:01;用户:学无止境;邮箱:;学号:7910509