《最新2020年中考数学试题含答案-(123).doc》由会员分享,可在线阅读,更多相关《最新2020年中考数学试题含答案-(123).doc(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品资料2020年中考数学试题含答案-(123).2020学年中考数学试卷一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个迭项中,只有一项是符合题目要求的。)1(3.00分)在1、1、2这四个数中,最小的数是()A1B1CD22(3.00分)如图,下列各组角中,互为对顶角的是()A1和2B1和3C2和4D2和53(3.00分)4的平方根是()A2B2C2D164(3.00分)下列图形中,属于中心对称图形的是()ABCD5(3.00分)若一组数据:1、2、x、4、5的众数为5,则这组数据的中位数是()A1B2C4D56(3.00分)下列运算正确的是()Aa2a2=2a2Ba2+a
2、2=a4C(a3)2=a6Da8a2=a47(3.00分)下列各式分解因式正确的是()Ax2+6xy+9y2=(x+3y)2B2x24xy+9y2=(2x3y)2C2x28y2=2(x+4y)(x4y)Dx(xy)+y(yx)=(xy)(x+y)8(3.00分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A9B10C11D129(3.00分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k0)与反比例函数y2=(c是常数,且c0)的图象相交于A(3,2),B(2,3)两点,则不等式y1y2的解集是()A3x2Bx3或x2C3x0或x2D0x
3、210(3.00分)如图,在ABC中,BAC=90,ADBC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为()A3B3C6D611(3.00分)如图,AB是O的直径,且经过弦CD的中点H,已知sinCDB=,BD=5,则AH的长为()ABCD12(3.00分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A()n1B2n1C()nD2n二、填空题(本大题共6小题,每小题3分,共18分;请把答案填在答題卡对应的位置上,在试卷上作答无效。)13(3.00分)要使二次根式有意义,则x的取
4、值范围是 14(3.00分)医学家发现了一种病毒,其长度约为0.00000029mm,用科学记数法表示为 mm15(3.00分)从1、0、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是 16(3.00分)如图,将RtABC绕直角顶点C顺时针旋转90,得到ABC,连接BB,若ABB=20,则A的度数是 17(3.00分)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20x30,且x为整数)出售,可卖出(30x)件,若使利润最大,则每件商品的售价应为 元18(3.00分)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EFBC,分别交BD、CD于G、F两
5、点若点P、Q分别为DG、CE的中点,则PQ的长为 三、解答题:(本大题共8题,满分66分。解答应写出文字说明、证明过程或演算步骤。在试卷上作答无效。)19(6.00分)计算:(1)2018+|()02sin6020(6.00分)解分式方程:+1=21(8.00分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时)频数(人数)频率2t340.13t4100.254t5a0.155t68b6t7120.3合计401(1)表中的a= ,b= ;(2)请将频数分布直方图补全;(3)若该校共有12
6、00名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?22(8.00分)如图,一艘游轮在A处测得北偏东45的方向上有一灯塔B游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:1.41,1.73)23(8.00分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进
7、B型车多少辆?24(8.00分)如图,在ABC中,ACB=90,O、D分别是边AC、AB的中点,过点C作CEAB交DO的延长线于点E,连接AE(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tanBAC=,求BC的长25(10.00分)如图,AB是O的弦,过AB的中点E作ECOA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE(1)求证:BD是O的切线;(2)若AB=12,DB=5,求AOB的面积26(12.00分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的
8、顶点坐标为D(1,4)(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DEy轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个迭项中,只有一项是符合题目要求的。)1(3.00分)在1、1、2这四个数中,最小的数是()A1B1CD2【分析】根据实数大小比较的法则比较即可【解答】解:在实数1,1,2中,最小的数是1故选:A【点评】本题考查了有理
9、数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小2(3.00分)如图,下列各组角中,互为对顶角的是()A1和2B1和3C2和4D2和5【分析】直接利用对顶角的定义得出答案【解答】解:互为对顶角的是:1和2故选:A【点评】此题主要考查了对顶角,正确把握对顶角的定义是解题关键3(3.00分)4的平方根是()A2B2C2D16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题【解答】解:(2)2=4,4的平方根是2故选:C【点评】本题考查了平方根的定义注意一个正数有两个平方根
10、,它们互为相反数;0的平方根是0;负数没有平方根4(3.00分)下列图形中,属于中心对称图形的是()ABCD【分析】根据中心对称图形的概念求解【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确,故选:D【点评】本题主要考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180后与原图重合5(3.00分)若一组数据:1、2、x、4、5的众数为5,则这组数据的中位数是()A1B2C4D5【分析】由众数的定义得出x=5,再将数据重新排列后由中位数的定义可得答案【解答】解:数据1、2、
11、x、4、5的众数为5,x=5,将数据从小到大重新排列为1、2、4、5、5,所以中位数为4,故选:C【点评】本题考查众数、中位数,解答本题的关键是明确题意,求出这组数据的中位数6(3.00分)下列运算正确的是()Aa2a2=2a2Ba2+a2=a4C(a3)2=a6Da8a2=a4【分析】根据合并同类项法则,单项式的乘法运算法则,单项式的除法运算法则,对各选项分析判断后利用排除法求解【解答】解:A、a2a2=a4,错误;B、a2+a2=2a2,错误;C、(a3)2=a6,正确;D、a8a2=a6,错误;故选:C【点评】本题考查了整式的除法,单项式的乘法,合并同类项法则,是基础题,熟记运算法则是解
12、题的关键7(3.00分)下列各式分解因式正确的是()Ax2+6xy+9y2=(x+3y)2B2x24xy+9y2=(2x3y)2C2x28y2=2(x+4y)(x4y)Dx(xy)+y(yx)=(xy)(x+y)【分析】直接利用公式法以及提取公因式法分解因式得出答案【解答】解:A、x2+6xy+9y2=(x+3y)2,正确;B、2x24xy+9y2=无法分解因式,故此选项错误;C、2x28y2=2(x+2y)(x2y),故此选项错误;D、x(xy)+y(yx)=(xy)2,故此选项错误;故选:A【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键8(3.00分)如图,这
13、是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A9B10C11D12【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案【解答】解:由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:25=10故选:B【点评】此题主要考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键9(3.00分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k0)与反比例函数y2=(c是常数,且c0)的图象相交于A(3,2),B(2,3)两点,则不等式y1y2的解集是()A3x2Bx3或x2C3x0或
14、x2D0x2【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求【解答】解:一次函数y1=kx+b(k、b是常数,且k0)与反比例函数y2=(c是常数,且c0)的图象相交于A(3,2),B(2,3)两点,不等式y1y2的解集是3x0或x2故选:C【点评】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键10(3.00分)如图,在ABC中,BAC=90,ADBC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为()A3B3C6D6【分析】由题意得到三角形ADE为等腰直角三角形,利用勾股定理求出AE的长,再利用直角三角形中斜边上的
15、中线等于斜边的一半,求出BC即可【解答】解:AD=ED=3,ADBC,ADE为等腰直角三角形,根据勾股定理得:AE=3,RtABC中,E为BC的中点,AE=BC,则BC=2AE=6,故选:D【点评】此题考查了直角三角形斜边上的中线,以及等腰直角三角形,熟练掌握直角三角形斜边上的中线性质是解本题的关键11(3.00分)如图,AB是O的直径,且经过弦CD的中点H,已知sinCDB=,BD=5,则AH的长为()ABCD【分析】连接OD,由垂径定理得出ABCD,由三角函数求出BH=3,由勾股定理得出DH=4,设OH=x,则OD=OB=x+3,在RtODH中,由勾股定理得出方程,解方程即可【解答】解:连
16、接OD,如图所示:AB是O的直径,且经过弦CD的中点H,ABCD,OHD=BHD=90,sinCDB=,BD=5,BH=4,DH=4,设OH=x,则OD=OB=x+3,在RtODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,OH=;AH=OA+OH=,故选:B【点评】此题考查了垂径定理、勾股定理以及三角函数此题难度不大,注意数形结合思想的应用12(3.00分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A()n1B2n1C()nD2n【分析】先求出第一个正方形面积、第二个正方形面
17、积、第三个正方形面积,探究规律后,即可解决问题【解答】解:第一个正方形的面积为1=20,第二个正方形的面积为()2=2=21,第三个正方形的边长为22,第n个正方形的面积为2n1,故选:B【点评】本题考查了规律型:图形的变化类,正方形的性质,考查了学生找规律的能力,本题中找到Sn的规律是解题的关键二、填空题(本大题共6小题,每小题3分,共18分;请把答案填在答題卡对应的位置上,在试卷上作答无效。)13(3.00分)要使二次根式有意义,则x的取值范围是x3【分析】直接利用二次根式的定义得出答案【解答】解:二次根式有意义,故x30,则x的取值范围是:x3故答案为:x3【点评】此题主要考查了二次根式
18、有意义的条件,正确把握二次根式的定义是解题关键14(3.00分)医学家发现了一种病毒,其长度约为0.00000029mm,用科学记数法表示为2.9107mm【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:0.00000029=2.9107,故答案为:2.9107【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定15(3.00分)从1、0、5.1、7这6个数中随机抽取一个数,
19、抽到无理数的概率是【分析】在6个数中找出无理数,再根据概率公式即可求出抽到无理数的概率【解答】解:在1、0、5.1、7这6个数中无理数有、这2个,抽到无理数的概率是=,故答案为:【点评】本题考查了概率公式以及无理数,根据无理数的定义找出无理数的个数是解题的关键16(3.00分)如图,将RtABC绕直角顶点C顺时针旋转90,得到ABC,连接BB,若ABB=20,则A的度数是65【分析】根据旋转的性质可得BC=BC,然后判断出BCB是等腰直角三角形,根据等腰直角三角形的性质可得CBB=45,再根据三角形的一个外角等于与它不相邻的两个内角的和求出BAC,然后根据旋转的性质可得A=BAC【解答】解:R
20、tABC绕直角顶点C顺时针旋转90得到ABC,BC=BC,BCB是等腰直角三角形,CBB=45,BAC=ABB+CBB=20+45=65,由旋转的性质得A=BAC=65故答案为:65【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键17(3.00分)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20x30,且x为整数)出售,可卖出(30x)件,若使利润最大,则每件商品的售价应为25元【分析】本题是营销问题,基本等量关系:利润=每件利润销售量,每件利润=每件售价每件进价再根据所列二次函数求
21、最大值【解答】解:设利润为w元,则w=(x20)(30x)=(x25)2+25,20x30,当x=25时,二次函数有最大值25,故答案是:25【点评】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用此题为数学建模题,借助二次函数解决实际问题18(3.00分)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EFBC,分别交BD、CD于G、F两点若点P、Q分别为DG、CE的中点,则PQ的长为2【分析】根据题意作出合适的辅助线,利用三角形中位线定理、三角形的相似可以求得PH和QH的长,然后根据勾股定理即可求得PQ的长【解答】解:作QMEF于点M,作PNEF于点
22、N,作QHPN交PN的延长线于点H,如右图所示,正方形ABCD的边长为12,BE=8,EFBC,点P、Q分别为DG、CE的中点,DF=4,CF=8,EF=12,MQ=4,PN=2,MF=6,QMEF,PNEF,BE=8,DF=4,EGBFGD,即,解得,FG=4,FN=2,MN=62=4,QH=4,PH=PN+QM,PH=6,PQ=,故答案为:2【点评】本题考查三角形中位线定理、正方形的性质、勾股定理、三角形相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题:(本大题共8题,满分66分。解答应写出文字说明、证明过程或演算步骤。在试卷上作答无效。)19(6.
23、00分)计算:(1)2018+|()02sin60【分析】直接利用特殊角的三角函数值以及绝对值的性质分别化简得出答案【解答】解:原式=1+12=1+1=0【点评】此题主要考查了实数运算,正确化简各数是解题关键20(6.00分)解分式方程:+1=【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【解答】解:去分母得:4+x21=x22x+1,解得:x=1,经检验x=1是增根,分式方程无解【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验21(8.00分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调
24、查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时)频数(人数)频率2t340.13t4100.254t5a0.155t68b6t7120.3合计401(1)表中的a=6,b=0.2;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?【分析】(1)根据题意列式计算即可;(2)根据b的值画出直方图即可;(3)利用样本估计总体的思想解决问题即可;【解答】解:解:(1)总人数=40.1=40,a=400.15=6,b=0.2;故答案为6,0.2(2)频数分布直方图如图所示:(3)由题意得,估计全校每周在
25、校参加体育锻炼时间至少有4小时的学生约为1200(0.15+0.2+0.3)=780名【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22(8.00分)如图,一艘游轮在A处测得北偏东45的方向上有一灯塔B游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:1.41,1.73)【分析】直接过点C作CMAB求出AM,CM的长,再利用锐角三角三角函数关系得出BM的长即可得出答案【解答】解:过点C作CMA
26、B,垂足为M,在RtACM中,MAC=9045=45,则MCA=45,AM=MC,由勾股定理得:AM2+MC2=AC2=(202)2,解得:AM=CM=40,ECB=15,BCF=9015=75,B=BCFMAC=7545=30,在RtBCM中,tanB=tan30=,即=,BM=40,AB=AM+BM=40+4040+401.73109(海里),答:A处与灯塔B相距109海里【点评】此题主要考查了解直角三角形的应用,正确作出辅助线是解题关键23(8.00分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元(1)求A、B两种型号的自行
27、车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【分析】(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据总价=单价数量结合B型车单价是A型车单价的6倍少60元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型自行车m辆,则购进A型自行车(130m)辆,根据总价=单价数量结合投入购车的资金不超过5.86万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得
28、:答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆(2)设购进B型自行车m辆,则购进A型自行车(130m)辆,根据题意得:260(130m)+1500m58600,解得:m20答:至多能购进B型车20辆【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式24(8.00分)如图,在ABC中,ACB=90,O、D分别是边AC、AB的中点,过点C作CEAB交DO的延长线于点E,连接AE(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tanBA
29、C=,求BC的长【分析】(1)由ASA证明AODCOE,得出对应边相等AD=CE,证出四边形AECD是平行四边形,即可得出四边形AECD是菱形;(2)由菱形的性质得出ACED,再利用三角函数解答即可【解答】(1)证明:点O是AC中点,OA=OC,CEAB,DAO=ECO,在AOD和COE中,AODCOE(ASA),AD=CE,CEAB,四边形AECD是平行四边形,又CD是RtABC斜边AB上的中线,CD=AD,四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,ACED,在RtAOD中,tanDAO=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:,
30、解得:x=1,OD=3,O,D分别是AC,AB的中点,OD是ABC的中位线,BC=2OD=6【点评】本题考查了菱形的判定方法、平行四边形的判定、全等三角形的判定与性质等知识;熟练掌握菱形的判定方法,证明三角形全等是解决问题的关键25(10.00分)如图,AB是O的弦,过AB的中点E作ECOA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE(1)求证:BD是O的切线;(2)若AB=12,DB=5,求AOB的面积【分析】(1)根据等腰三角形的性质和切线的判定方法可以求得OBD的度数,从而可以证明结论成立;(2)要求AOB的面积只要求出OE的长即可,根据题目中的条件和三角形相似的知识
31、可以求得OE的长,从而可以解答本题【解答】(1)证明:OA=OB,DB=DE,A=OBA,DEB=DBE,ECOA,DEB=AEC,A+DEB=90,OBA+DBE=90,OBD=90,OB是圆的半径,BD是O的切线;(2)过点D作DFAB于点F,连接OE,点E是AB的中点,AB=12,AE=EB=6,OEAB,又DE=DB,DFBE,DB=5,DB=DE,EF=BF=3,DF=4,AEC=DEF,A=EDF,OEAB,DFAB,AEO=DFE=90,AEODFE,即,得EO=4.5,AOB的面积是:=27【点评】本题考查切线的判定与性质、垂径定理、勾股定理、相似三角形的判定与性质,解答本题的
32、关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答26(12.00分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(1,4)(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DEy轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由【分析】(1)根据OA,OB的长,可得答案;(2)根据待定系数法,可得函数解析式;(3
33、)根据相似三角形的判定与性质,可得EG,EF的长,根据整式的加减,可得答案【解答】解:(1)由抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,得A点坐标(3,0),B点坐标(1,0);(2)设抛物线的解析式为y=a(x+3)(x1),把C点坐标代入函数解析式,得a(0+3)(01)=3,解得a=1,抛物线的解析式为y=(x+3)(x1)=x22x+3;(3)EF+EG=8(或EF+EG是定值),理由如下:过点P作PQy轴交x轴于Q,如图设P(t,t22t+3),则PQ=t22t+3,AQ=3+t,QB=1t,PQEF,AEFAQP,=,EF=(t22t+3)=2(1t);又PQEG,BEGBQP,=,EG=2(t+3),EF+EG=2(1t)+2(t+3)=8【点评】本题考查了二次函数综合题,解(1)的关键是利用点的坐标表示方法;解(2)的关键是利用待定系数法;解(3)的关键是利用相似三角形的性质得出EG,EF的长,又利用了整式的加减