《高中数学不等式选修知识点和常考题型归纳.doc》由会员分享,可在线阅读,更多相关《高中数学不等式选修知识点和常考题型归纳.doc(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、_选修4-5不等式选讲 1、基础知识梳理 2、常考题型归纳3、强化训练一、基础知识梳理【复习指导】本讲复习时,紧紧抓住含绝对值不等式的解法,以及利用重要不等式对一些简单的不等式进行证明该部分的复习以基础知识、基本方法为主,不要刻意提高难度,以课本难度为宜,关键是理解有关内容本质.基础梳理1含有绝对值的不等式的解法(1)|f(x)|a(a0)f(x)a或f(x)a;(2)|f(x)|a(a0)af(x)a;(3)对形如|xa|xb|c,|xa|xb|c的不等式,可利用绝对值不等式的几何意义求解2含有绝对值的不等式的性质|a|b|ab|a|b|.3基本不等式定理1:设a,bR,则a2b22ab.当
2、且仅当ab时,等号成立定理2:如果a、b为正数,则,当且仅当ab时,等号成立定理3:如果a、b、c为正数,则,当且仅当abc时,等号成立定理4:(一般形式的算术几何平均值不等式)如果a1、a2、an为n个正数,则,当且仅当a1a2an时,等号成立5不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等双基自测1不等式1|x1|3的解集为_答案(4,2)(0,2)2不等式|x8|x4|2的解集为_解析令:f(x)|x8|x4|当x4时,f(x)42;当4x8时,f(x)2x122,得x5,4x5;当x8时,f(x)42不成立故原不等式的解集为:x|x5答案x|x53已知关
3、于x的不等式|x1|x|k无解,则实数k的取值范围是_解析|x1|x|x1x|1,当k1时,不等式|x1|x|k无解,故k1.答案k14若不等式|3xb|4的解集中的整数有且仅有1,2,3,则b的取值范围为_解析由|3xb|4,得x,即解得5b7.答案(5,7)5(2011南京模拟)如果关于x的不等式|xa|x4|1的解集是全体实数,则实数a的取值范围是_解析在数轴上,结合实数绝对值的几何意义可知a5或a3.答案(,53,) 考向一含绝对值不等式的解法【例1】设函数f(x)|2x1|x4|.(1)解不等式f(x)2;(2)求函数yf(x)的最小值审题视点 第(1)问:采用分段函数解不等式;第(
4、2)问:画出函数f(x)的图象可求f(x)的最小值解(1)f(x)|2x1|x4|当x时,由f(x)x52得,x7.x7;当x4时,由f(x)3x32,得x,x4;当x4时,由f(x)x52,得x3,x4.故原不等式的解集为.(2)画出f(x)的图象如图:f(x)min. (1)用零点分段法解绝对值不等式的步骤:求零点;划区间、去绝对值号;分别解去掉绝对值的不等式;取每个结果的并集,注意在分段时不要遗漏区间的端点值(2)用图象法,数形结合可以求解含有绝对值的不等式,使得代数问题几何化,即通俗易懂,又简洁直观,是一种较好的方法【训练1】 设函数f(x)|x1|xa|.(1)若a1,解不等式f(x
5、)3;(2)如果xR,f(x)2,求a的取值范围解(1)当a1时,f(x)|x1|x1|,f(x)作出函数f(x)|x1|x1|的图象由图象可知,不等式的解集为.(2)若a1,f(x)2|x1|,不满足题设条件;若a1,f(x)f(x)的最小值为1a.若a1,f(x)f(x)的最小值为a1.对于xR,f(x)2的充要条件是|a1|2,a的取值范围是(,13,)考向二不等式的证明【例2】证明下列不等式:(1)设ab0,求证:3a32b33a2b2ab2;(2)a24b29c22ab3ac6bc;(3)a68b6c62a2b2c2.审题视点 (1)作差比较;(2)综合法;(3)利用柯西不等式证明(
6、1)3a32b3(3a2b2ab2)3a2(ab)2b2(ab)(ab)(3a22b2)ab0,ab0,3a22b20.(ab)(3a22b2)0.3a22b33a2b2ab2.(2)a24b224ab,a29c226ac,4b29c2212bc,2a28b218c24ab6ac12bc,a24b29c22ab3ac6bc.(3)a68b6c63 3a2b2c22a2b2c2,a68b6c62a2b2c2. (1)作差法应该是证明不等式的常用方法作差法证明不等式的一般步骤是:作差;分解因式;与0比较;结论关键是代数式的变形能力(2)注意观察不等式的结构,利用基本不等式或柯西不等式证明【训练2】
7、 (2010辽宁)已知a,b,c均为正数,证明:a2b2c226,并确定a,b,c为何值时,等号成立证明法一因为a,b,c均为正数,由基本不等式得,a2b2c23(abc),3(abc),所以29(abc),故a2b2c223(abc)9(abc).又3(abc)9(abc)26,所以原不等式成立当且仅当abc时,式和式等号成立当且仅当3(abc)9(abc)时,式等号成立故当且仅当abc3时,原不等式等号成立法二因为a,b,c均为正数,由基本不等式得a2b22ab,b2c22bc,c2a22ac.所以a2b2c2abbcac.同理,故a2b2c22abbcac6.所以原不等式成立当且仅当ab
8、c时,式和式等号成立,当且仅当abc,(ab)2(bc)2(ac)23时,式等号成立故当且仅当abc3时,原不等式等号成立考向三利用基本不等式或柯西不等式求最值【例3】已知a,b,cR,且abc1,求的最大值审题视点 先将()平方后利用基本不等式;还可以利用柯西不等式求解解法一利用基本不等式()2(3a1)(3b1)(3c1)222(3a1)(3b1)(3c1)(3a1)(3b1)(3b1)(3c1)(3a1)(3c1)3(3a1)(3b1)(3c1)18,3,()max3.法二利用柯西不等式(121212)()2()2()2(111)2()233(abc)3又abc1,()218,3.当且仅
9、当时,等号成立()max3. 利用基本不等式或柯西不等式求最值时,首先要观察式子特点,构造出基本不等式或柯西不等式的结构形式,其次要注意取得最值的条件是否成立【训练3】 已知abc1,ma2b2c2,求m的最小值解法一abc1,a2b2c22ab2bc2ac1,又a2b22ab,a2c22ac,b2c22bc,2(a2b2c2)2ab2ac2bc,1a2b2c22ab2bc2ac3(a2b2c2)a2b2c2.当且仅当abc时,取等号,mmin.法二利用柯西不等式(121212)(a2b2c2)(1a1b1c)abc1.a2b2c2,当且仅当abc时,等号成立mmin 如何求解含绝对值不等式的
10、综合问题从近两年的新课标高考试题可以看出,高考对不等式选讲的考查难度要求有所降低,重点考查含绝对值不等式的解法(可能含参)或以函数为背景证明不等式,题型为填空题或解答题【示例】 (本题满分10分)(2011新课标全国)设函数f(x)|xa|3x,其中a0.(1)当a1时,求不等式f(x)3x2的解集;(2)若不等式f(x)0的解集为x|x1,求a的值 第(2)问解不等式|xa|3x0的解集,结果用a表示,再由x|x1求a.解答示范 (1)当a1时,f(x)3x2可化为|x1|2.由此可得x3或x1.(3分)故不等式f(x)3x2的解集为x|x3或x1(5分)(2)由f(x)0得,|xa|3x0
11、.此不等式化为不等式组或即或(8分)因为a0,所以不等式组的解集为.由题设可得1,故a2.(10分) 本题综合考查了含绝对值不等式的解法,属于中档题解含绝对值的不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|xa|xb|m或|xa|xb|m(m为正常数),利用实数绝对值的几何意义求解较简便【试一试】 (2011辽宁)已知函数f(x)|x2|x5|.(1)证明:3f(x)3;(2)求不等式f(x)x28x15的解集尝试解答(1)f(x)|x2|x5|当2x5时,32x73.所以3f(x)3.(2)由(
12、1)可知,当x2时,f(x)x28x15的解集为空集;当2x5时,f(x)x28x15的解集为x|5x5;当x5时,f(x)x28x15的解集为x|5x6综上,不等式f(x)x28x15的解集为x|5x6.二、常考题型归纳6.1均值不等式在证明中的应用1. (1)已知,求证:;(2)已知实数 满足:,试利用(1)求的最小值。(1)证:(当且仅当时,取等号);(2)解:,当且仅当时,的最小值是。考点:均值不等式在证明中的应用、综合法证明不等式6.2绝对值不等式a6.2.1单绝对值不等式2. 已知函数若函数恰有个零点,则实数的取值范围为_.答案:解析:分别作出函数与的图像,由图知,时,函数与无交点
13、,时,函数与有三个交点,故当,时,函数与有一个交点,当,时,函数与有两个交点,当时,若与相切,则由得:或(舍),因此当,时,函数与有两个交点,当,时,函数与有三个交点,当,时,函数与有四个交点,所以当且仅当时,函数与恰有个交点.考点:单绝对值不等式3. 存在 ,使得不等式 成立,则实数 的取值范围为_答案:解析:不等式 ,即 ,令 的图象是关于 对称的一个 字形图形,其象位于第一、二象限; ,是一个开口向下,关于 轴对称,最大值为 的抛物线;要存在 ,使不等式 成立,则 的图象应该在第二象限和 的图象有交点,两种临界情况,当 时,的右半部分和 在第二象限相切: 的右半部分即 ,联列方程 ,只有
14、一个解;即 ,即 ,得: ;此时 恒大于等于 ,所以取不到;所以 ;当 时,要使 和 在第二象限有交点,即 的左半部分和 的交点的位于第二象限;无需联列方程,只要 与 轴的交点小于 即可; 与 轴的交点为 ,所以 ,又因为 ,所以 ;综上,实数 的取值范围是: ;故答案为:考点:单绝对值不等式6.2.2同系数绝对值相加型不等式4. 已知函数,.(1)当时,求不等式的解集;(2)设,且当时,求的取值范围。(1)当时,令,作出函数图像可知,当时,故原不等式的解集为;(2)依题意,原不等式化为,故对都成立,故,故,故的取值范围是.考点:同系数绝对值相加型不等式6.2.3同系数绝对值相减型不等式5.
15、已知函数(1)证明:(2)求不等式的解集。(1) 当时,所以,(2)由(1)可知当 时,的解集为空集;当时,的解集为当 时,的解集为综上:不等式的解集:考点:同系数绝对值相减型不等式6.2.4不同系数绝对值相加减型不等式6. 设函数(1)求不等式的解集;(2)若恒成立,求实数的取值范围(1)由题意得当 时,不等式化为,解得,当时,不等式化为,解得,当时,不等式化为,解得,综上,不等式的解集为(2)由(1)得 ,若, 恒成立,则只需 ,解得 ,综上,的取值范围为考点:不同系数绝对值相加减型不等式6.3已知绝对值不等式解求参数7. 设函数(1)当时,求不等式的解集;(2)如果不等式的解集为,求的值
16、。(1)当时,可化为。 由此可得 或。 故不等式的解集为或。(2) 由 得 此不等式化为不等式组 或即 或 因为,所以不等式组的解集为 由题设可得,故考点:已知绝对值不等式解求参数6.4已知绝对值不等式解的范围求参数范围8. 已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.答案:(1)当时,所以不等式可化为,或,或解得或因此不等式的解集为或(2)由已知即为,也即若的解集包含 ,则,也就是,所以,从而,解得因此的取值范围为.考点:已知绝对值不等式解的范围求参数范围、同系数绝对值不等式相加减6.5含绝对值不等式的恒成立问题9. 已知函数,(1)若对任意的有成立,求的取值范围
17、;(2)若不等式,对于任意的都成立,求的取值范围。(1)根据题意, 小于等于 的最小值由可得所以 (2)当 即 时, 恒成立,当 时,由绝对值不等式得性质可得 ,当且仅当 时取 , 恒成立, , ,考点:含绝对值不等式的恒成立问题、同系数绝对值相加型不等式6.6含绝对值不等式的能成立问题10. 已知函数 .(1)求 的取值范围,使 为常数函数.(2)若关于 的不等式 有解,求实数 的取值范围.(1)则当 时, 为常数函数.(2)方法一:如图,结合(1)知函数的最小值为 , 实数 的取值范围为 .方法二: ; ,等号当且仅当 时成立.得函数 的最小值为 ,则实数 的取值范围为 .考点:含绝对值不
18、等式的能成立问题6.7利用绝对值的三角不等式放缩求最值11. 已知实数满足:求证:证明:,由题设.考点:绝对值的三角不等式6.8数形结合在含参绝对值不等式中的应用12. 已知函数(1)求的解集;(2)设函数,若对任意的都成立,求实数的取值范围(1),即, 或 或解得不等式:;:无解;:,所以的解集为或(2)即的图象恒在图象的上方,可以作出的图象,而图象为恒过定点,且斜率变化的一条直线,作出函数图象, 其中 ,由图可知,要使得的图象恒在图象的上方,实数的取值范围应该为 考点:同系数绝对值不等式相加型、 数形结合在含参绝对值不等式中的应用 7.证明不等式的基本方法7.1比较法证明不等式设不等式的解
19、集是,(1)试比较与的大小;(2)设表示数集的最大数求证:答案:(1)(2)见解析解析:(1)先解出.问题得证.(2)可知,所以根据不等式的性质,同向正向不等式具有可乘性,从而可证出.故.考点:比较法证明不等式7.2综合法证明不等式7.3分析法证明不等式13. 已知,不等式的解集为.(1)求;(2)当时,证明:.(1)解不等式: ; 或 或或或,. (2)需证明:,只需证明,即需证明,所以原不等式成立.考点:分析法证明不等式7.4反证法证明不等式14. 设 且证明:(1) ;(2) 与 不可能同时成立.由, 得(1)由基本不等式及 ,有 ,即;(2)假设与同时成立,则由 及 得 ,同理 ,从而
20、 ,这与 矛盾,故 与 不可能同时成立.考点:反证法证明不等式、均值不等式在证明中的应用8.5放缩法证明不等式(多为数列的题)15. 已知数列的前项和满足(1)求数列的通项公式;(2)设,记数列的前和为,证明:【答案】(1);(2)详见解析.【解析】试题分析:(1)考虑到,因此可以利用条件中的式子得到数列的一个递推公式,从而即可求解;(2)由(1)可知,从而可证,进一步放缩可得,求和即可得证.试题解析:(1),当时, ,又,与两边分别相减得,得,又,数列是以为首项,为公比的等比数列,得;,得,又,.9.柯西不等式9.1柯西不等式的代数形式16. 已知关于的不等式的解集为 求实数 的值; 求的最
21、大值. 由,得则,解得 当且仅当即时等号成立,故.考点:柯西不等式的代数形式9.2一般形式的柯西不等式17. 已知函数且的解集为,求的值;若且求证(1)的解集是故.由知由柯西不等式得考点:一般的柯西不等式三、强化训练选修4-5不等式选讲1不等式x|2x1|3的解集为_解析原不等式可化为或解得x或2x.所以原不等式的解集是.答案2不等式|x1|x2|5的解集为_解析法一当x2时原不等式即1x2x5,解得3x2;当2x1时,原不等式即1x2x5,因为31时,原不等式即x12x5,解得1x2.综上,原不等式的解集为x|3x2法二不等式|x1|x2|5的几何意义为数轴上到2,1两个点的距离之和小于5的
22、点组成的集合,而2,1两个端点之间的距离为3,由于分布在2,1以外的点到2,1的距离在2,1外部的距离要计算两次,而在2,1内部的距离则只计算一次,因此只要找出2左边到2的距离等于1的点3,以及1右边到1的距离等于1的点2,这样就得到原不等式的解集为x|3x2答案x|3x23已知a,b,c是正实数,且abc1,则的最小值为_解析332229.当且仅当abc时等号成立答案94(2013广州模拟)不等式|x1|x2|a对任意实数x恒成立,则a的取值范围是_解析|x1|x2|x1|2x|x12x|3,a3.答案(,35使关于x的不等式|x1|kx有解的实数k的取值范围是_解析|x1|kxkx|x1|
23、,又x|x1|x|x1|的最大值为1.ka的解集是全体实数,则a的取值范围是_新- 课- 标- -一- 网解析令f(x)|x3|x4|,则|x3|x4|x34x|1,则f(x)min1,故a1.答案(,17若关于x的不等式|a|x1|x2|存在实数解,则实数a的取值范围是_解析令t|x1|x2|,得t的最小值为3,即有|a|3,解得a3或a3.答案(,33,)8在实数范围内,不等式|2x1|2x1|6的解集为_解析原不等式可化为或或解得x,即原不等式的解集为.答案9(2013江西重点盟校二次联考)若不等式|x1|x3|m1|恒成立,则m的取值范围为_解析|x1|x3|(x1)(x3)|4,不等
24、式|x1|x3|m1|恒成立,只需|m1|4,即3m5.答案3,510(2013临沂模拟)对任意xR,|2x|3x|a24a恒成立,则a满足_解析|2x|3x|5,要使|2x|3x|a24a恒成立,即5a24a,解得1a5.答案1,511若不等式|3xb|4的解集中的整数有且仅有1,2,3,则b的取值范围是_解析|3xb|4x5b|a5|1对于任一非零实数x均成立,则实数a的取值范围是_解析|x|2,所以|a5|12,即|a5|1,4a2;(2)求函数yf(x)的最小值解(1)f(x)|2x1|x4|当x2得x7,x7;当x2得x,新- 课- 标- -一- 网x2,得x3,x4.故原不等式的解
25、集为.(2)画出f(x)的图象如图:f(x)min.2设a,b,c为正实数,求证:abc2.证明因为a,b,c为正实数,由均值不等式可得3,即.所以abcabc.而abc22,所以abc2.3已知a,b,c均为正数,证明:a2b2c226,并确定a,b,c为何值时,等号成立证明法一因为a、b、c均为正数,由平均值不等式得a2b2c23(abc),3(abc),所以29(abc).故a2b2c223(abc)9(abc).又3(abc)9(abc)26,所以原不等式成立当且仅当abc时,式和式等号成立当且仅当3(abc)9(abc)时,式等号成立即当且仅当abc3时,原式等号成立法二因为a,b,
26、c均为正数,由基本不等式得a2b22ab,b2c22bc,c2a22ac,所以a2b2c2abbcac.同理,故a2b2c22abbcac3336.所以原不等式成立,当且仅当abc时,式和式等号成立,当且仅当abc,(ab)2(bc)2(ac)23时,式等号成立即当且仅当abc3时,原式等号成立4若对任意x0,a恒成立,求a的取值范围解a对任意x0恒成立,设ux3,只需a恒成立即可x0,u5(当且仅当x1时取等号)由u5,知0,a.5(2013新课标全国改编)已知函数f(x)|2x1|2xa|,g(x)x3.(1)当a2时,求不等式f(x)1,且当x时,f(x)g(x),求a的取值范围解(1)当a2时,f(x)|2x1|2x2|画出f(x)的图象,在同一坐标系中,画出g(x)x3的图象f(x)1,则0)(1)当a1时,求此不等式的解集;(2)若此不等式的解集为R,求实数a的取值范围解(1)当a1时,不等式为|x2|x1|2,由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离之和大于等于2.x或x.不等式的解集为.注:也可用零点分段法求解(2)|ax2|axa|a2|,原不等式的解集为R等价于|a2|2,a4或a0.又a0,a4. 34_