《版初中数学课程标准解读.doc》由会员分享,可在线阅读,更多相关《版初中数学课程标准解读.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、_2011版初中数学课程标准解读 上传: 黄菊芬 更新时间:2012-3-6 阅读: 175 2011版初中数学课程标准解读一、“课程基本理念”的修改1将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。2将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。”二、“设计思路”的修改1对“数与代数”,“图形与
2、几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。2将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。并专门阐述了“应用意识”和“创新意识”。三、“课程目标”的修改1明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。2提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。3完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、
3、独立思考、合作交流、反思质疑等学习习惯”。4规范了课程目标的若干术语。并在学段目标中使用这些术语。四、“课程内容”(原“内容标准”)的修改1对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。2从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中
4、的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。3四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。(1)删除的内容在“数与代数”领域,删除了一些内容,例如:对“大数”的认识与应用“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)对有效数字的要求“了解有效数字的概念”(实验稿P32)对一元一次不等式组的要求“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)
5、在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:关于等腰梯形的相关要求(实验稿P39、P43)探索并了解圆与圆的位置关系(实验稿P39)关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40)关于镜面对称的要求(实验稿P41)“统计与概率”部分删除的内容极差、频数折线图等内容(2)新增加的内容“数与代数”中既有必学的内容,也有选学的内容知道a的含义(这里a表示有理数)最简二次根式和最简分式的概念能进行简单的整式乘法运算中增加了一次式与二次式相乘能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等会利用待定系数法确定一次函数的解
6、析表达式以上为增加的必学内容,此外,此次标准修改,还以标注“*”的方式,增加了选学内容,具体如下:*解简单的三元一次方程组*了解一元二次方程的根与系数的关系*知道给定不共线三点的坐标可以确定一个二次函数在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。会比较线段的大小,理解线段的和、差,以及线段中点的意义了解平行于同一条直线的两条直线平行会按照边长的关系和角的大小对三角形进行分类了解并证明圆内接四边形的对角互补了解正多边形的概念及正多边形与圆的关系尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形下面的要求是选
7、学内容:*了解平行线性质定理的证明*探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧*探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等*了解相似三角形判定定理的证明(3)在要求上有变化的内容(略)4在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。这样使综合与实践的学习更加具有可操作性。五、“实施建议”的修改“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。六、“实例”的修改增加了一些帮助教师理解、澄清困惑的实例。并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。七、增加附录将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。对实例进行统一编号,便于查找和使用。7_