《2022年初中数学二次函数知识点整理 2.pdf》由会员分享,可在线阅读,更多相关《2022年初中数学二次函数知识点整理 2.pdf(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学二次函数知识点整理1. 定义:一般地,如果cbacbxaxy,(2是常数,)0a,那么y叫做x的二次函数 . 2. 二次函数2axy的性质(1)抛物线2axy的顶点是坐标原点,对称轴是y轴. (2)函数2axy的图像与a的符号关系 . 当0a时抛物线开口向上顶点为其最低点;当0a时抛物线开口向下顶点为其最高点. (3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为2axy)(0a. 3. 二次函数cbxaxy2的图像是对称轴平行于(包括重合)y 轴的抛物线 .4. 二次函数cbxaxy2用配方法可化成:khxay2的形式, 其中abackabh4422,. 5. 二次函数由特殊到一
2、般,可分为以下几种形式:2axy;kaxy2;2hxay;khxay2;cbxaxy2. 6. 抛物线的三要素:开口方向、对称轴、顶点. a的符号决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同. 平行于y轴(或重合)的直线记作hx. 特别地,y轴记作直线0 x. 7. 顶点决定抛物线的位置. 几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8. 求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,顶点是),(abacab4422,对称轴是直线abx2. (2
3、)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是直线hx. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 23 页物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9. 抛物线cbxaxy2中,cba,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样 . (2)b和a共同决定抛物线对称轴的位置. 由于抛物线cbxax
4、y2的对称轴是直线abx2, 故:0b时,对称轴为y轴;0ab(即a、b同号)时,对称轴在y轴左侧;0ab(即a、b异号)时,对称轴在y轴右侧 . (3)c的大小决定抛物线cbxaxy2与y轴交点的位置 . 当0 x时,cy,抛物线cbxaxy2与y轴有且只有一个交点(0,c) :0c,抛物线经过原点; 0c, 与y轴交于正半轴;0c, 与y轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立. 如抛物线的对称轴在y轴右侧,则0ab. 10. 几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0 x(y轴)( 0,0 )kaxy20 x
5、(y轴)(0, k) 2hxayhx(h,0) khxay2hx(h,k) cbxaxy2abx2(abacab4422,) 11. 用待定系数法求二次函数的解析式(1)一般式:cbxaxy2. 已知图像上三点或三对x、y的值,通常选择一般式. (2)顶点式:khxay2. 已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay. 12. 直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点为 (0, c). 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 23
6、页(2)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2). (3)抛物线与x轴的交点二次函数cbxaxy2的 图像 与x轴 的两 个 交 点的 横 坐 标1x、2x,是 对 应 一元 二 次 方程02cbxax的两个实数根. 抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点0抛物线与x轴相交;有一个交点(顶点在x轴上)0抛物线与x轴相切;没有交点0抛物线与x轴相离 . ( 4)平行于x轴的直线与抛物线的交点同( 3)一样可能有0 个交点、 1 个交点、 2 个交点 . 当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcb
7、xax2的两个实数根. ( 5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点, 由方程组cbxaxynkxy2的解的数目来确定:方程组有两组不同的解时l与G有两个交点 ; 方程组只有一组解时l与G只有一个交点;方程组无解时l与G没有交点 . ( 6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB444222122122121一次函数与反比例函数考点一、平面直角坐标系(3 分)1、平面直角坐标系在平面内画两条互相垂直且有公
8、共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 23 页第二象限、第三象限、第四象限。注意: x 轴和 y 轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分
9、开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ba时, (a, b)和( b,a)是两个不同点的坐标。考点二、不同位置的点的坐标的特征(3 分)1、各象限内点的坐标的特征点 P(x,y) 在第一象限0,0 yx点 P(x,y) 在第二象限0,0 yx点 P(x,y) 在第三象限0,0 yx点 P(x,y) 在第四象限0,0 yx2、坐标轴上的点的特征点 P(x,y) 在 x 轴上0y,x 为任意实数点 P(x,y) 在 y 轴上0 x,y 为任意实数点 P(x,y) 既在 x 轴上,又在y 轴上x, y 同时为零,即点P 坐标为( 0,0)3、两条坐标轴夹角平分线上点的坐标的特征
10、点 P(x,y) 在第一、三象限夹角平分线上x 与 y 相等点 P(x,y) 在第二、四象限夹角平分线上x 与 y 互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。位于平行于y 轴的直线上的各点的横坐标相同。5、关于 x 轴、 y 轴或远点对称的点的坐标的特征点 P 与点 p 关于 x 轴对称横坐标相等,纵坐标互为相反数点 P 与点 p 关于 y 轴对称纵坐标相等,横坐标互为相反数点 P 与点 p 关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离点 P(x,y) 到坐标轴及原点的距离:(1)点 P(x,y) 到 x 轴的距离等于y(2)点
11、 P(x,y) 到 y 轴的距离等于x(3)点 P(x,y) 到原点的距离等于22yx考点三、函数及其相关概念(38 分)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x 与 y,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量, y 是 x 的函数。2、函数解析式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 23 页用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的
12、三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量 x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。考点四、正比例函数和一次函数(310 分)1、正比例函数和一次函数的概念一般地,如果bkxy(k,b 是常数,
13、k0) ,那么 y 叫做 x 的一次函数。特别地,当一次函数bkxy中的 b 为 0 时,kxy( k 为常数, k0) 。这时, y 叫做 x 的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数bkxy的图像是经过点(0,b)的直线;正比例函数kxy的图像是经过原点(0,0)的直线。k 的符号b 的符号函数图像图像特征k0 b0 y 0 x 图像经过一、二、三象限,y 随 x 的增大而增大。b0 y 0 x 图像经过一、三、四象限,y 随 x 的增大而增大。K0 y 图像经过一、二、四象限,y 随 x 的精选学习资料 - - - -
14、 - - - - - 名师归纳总结 - - - - - - -第 5 页,共 23 页0 x 增大而减小b0 时,图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0 时, y 随 x 的增大而增大(2)当 k0 k0 时,函数图像的两个分支分别在第一、三象限。在每个象限内,y 随 x 的增大而减小。x 的取值范围是x0,y 的取值范围是y0;当 k0 a0 y 0 x y 0 x 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 23 页性质(1)抛物线开口向上,并向上无限延伸;( 2)对称轴是x=ab2,顶点坐标是(ab2,
15、abac442) ;(3)在对称轴的左侧,即当xab2时, y 随 x 的增大而增大,简记左减右增;(4)抛物线有最低点,当 x=ab2时,y 有最小值,abacy442最小值(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2,顶点坐标是(ab2,abac442) ;(3)在对称轴的左侧,即当xab2时,y 随 x 的增大而减小,简记左增右减;(4)抛物线有最高点,当x=ab2时, y 有最大值,abacy442最大值2、二次函数)0,(2acbacbxaxy是常数,中,cb、a的含义:a表示开口方向:a0时,抛物线开口向上, ,a0 时,图像与x 轴有两个交点;当=0 时,图像与
16、x 轴有一个交点;当0)【或左 (h0)【或下 (k0)【或左 (h0)【或左 (h0)【或下 (k0)【或向下 (k0)】平移 |k|个单位y=a(x-h)2+ky=a(x-h)2y=ax2+ky=ax22. 平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移” 概括成八个字“同左上加,异右下减” 0a向下0h,X=h xh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0a的符号开口方向顶点坐标对称轴性质0a向上hk,X=h xh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k0a向下hk,X=h xh时,y随x的增大而减小;x
17、h时,y随x的增大而增大;xh时,y有最大值k精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 23 页三、二次函数2ya xhk与2yaxbxc的比较请将2245yxx利用配方的形式配成顶点式。请将2yaxbxc配成2ya xhk。总结:从解析式上看,2ya xhk与2yaxbxc是两种不同的表达形式,后者通过配方可以得到前者,即22424bacbyaxaa,其中2424bacbhkaa,四、二次函数2yaxbxc图象的画法五点绘图法:利用配方法将二次函数2yaxbxc化为顶点式2()ya xhk,确定其开口方向、对称轴及顶点坐标,然
18、后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与x轴的交点10 x ,20 x ,(若与x轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点 . 五、二次函数2yaxbxc的性质1. 当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随x的增大而减小;当2bxa时,y随x的增大而增大;当2bxa时,y有最小值244acba2. 当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,当2b
19、xa时,y随x的增大而增大;当2bxa时,y随x的增大而减小;当2bxa时,y有最大值244acba六、二次函数解析式的表示方法1. 一般式:2yaxbxc(a,b,c为常数 ,0a) ;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 23 页2. 顶点式:2()ya xhk(a,h,k为常数 ,0a) ;3. 两根式:12()()ya xxxx(0a,1x,2x是抛物线与x轴两交点的横坐标). 注意: 任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240bac时,抛物线
20、的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2yaxbxc中,a作为二次项系数,显然0a 当0a时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大; 当0a时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小2. 一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴 在0a的前提下,当0b时,02ba,即抛物线的对称轴在y轴左侧; ab 同号同左上加当0b时,02ba,即抛物线的对称轴就是
21、y轴;当0b时,02ba,即抛物线对称轴在y轴的右侧 a,b 异号异右下减 在0a的前提下,结论刚好与上述相反,即当0b时,02ba,即抛物线的对称轴在y轴右侧; a,b 异号异右下减当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的左侧 ab 同号同左上加总结起来,在a确定的前提下,b决定了抛物线对称轴的位置总结:同左上加异右下减3. 常数项c 当0c时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正; 当0c时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; 当0c时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐
22、标为负总结起来,c决定了抛物线与y轴交点的位置总之,只要abc, ,都确定,那么这条抛物线就是唯一确定的二次函数解析式的确定:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 23 页根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常
23、选用顶点式二、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2ya xb xc关于x轴对称后,得到的解析式是2ya xb xc;2ya xhk关于x轴对称后,得到的解析式是2ya xhk;2. 关于y轴对称2ya xb xc关于y轴对称后,得到的解析式是2yaxb xc;2ya xhk关于y轴对称后,得到的解析式是2ya xhk;3. 关于原点对称2ya xb xc关于原点对称后,得到的解析式是2ya xb xc;2yaxhk关于原点对称后,得到的解析式是2yaxhk;4. 关于顶点对称2ya xb xc关于顶点对称后,得到的解析式是222bya
24、 xb xca;2ya xhk关于顶点对称后,得到的解析式是2ya xhk5. 关于点mn,对称2ya xhk关于点mn,对称后,得到的解析式是222ya xhmnk根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程20axbxc是二次函数2yaxbx
25、c当函数值0y时的特殊情况. 图象与x轴的交点个数:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 23 页 当240bac时,图象与x轴交于两点1200A xB x,12()xx,其中的12xx,是一元二次方程200axbxca的两根这两点间的距离2214bacABxxa. 当0时,图象与x轴只有一个交点; 当0时,图象与x轴没有交点. 1当0a时,图象落在x轴的上方,无论x为任何实数,都有0y;2当0a时,图象落在x轴的下方,无论x为任何实数,都有0y2. 抛物线2yaxbxc的图象与y轴一定相交,交点坐标为(0,)c;3. 二次
26、函数常用解题方法总结: 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数2yaxbxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标. 与二次函数有关的还有二次三项式,二次三项式2(0)axbxc a本身就是所含字母x的二次函数;下面 以0a时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=x22y=2
27、x2y=x2y=-2x2y= -x2y= -x220 抛物线与x轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根0抛物线与x轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0抛物线与x轴无交点二次三项式的值恒为正一元二次方程无实数根. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 23 页y=3(x+4)2y=3(x-2)2y=3x2y=-2(x+3)2y=-2(x-3)2y=-2x2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 23 页,共 23 页