《最新大学物理实验陈国杰教学课件.ppt》由会员分享,可在线阅读,更多相关《最新大学物理实验陈国杰教学课件.ppt(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、大学物理实验陈国杰大学物理实验陈国杰第一章 误差、数据处理基本知识1 测量与误差2 测量不确定度和测量结果报道3 有效数字及其运算4 常用数据处理方法1234(2 2)标准误差标准误差的意义的意义 反映了测量的离散性反映了测量的离散性越小,离散度就越小,测量精密度越高。 具有明确的概率意义 在置信区间-2,+2 和-3,+3内的置信概率分别为95.4%和99.7%。 所以把=3=3称为极限误差称为极限误差。6827. 0)()(dpxX(3)随机误差的估算)随机误差的估算 有限次测量的标准偏差算术平均值为:在有限次次测量时,用算术平均值表示测量结果。 而标准误差则由标准偏差Sx作为最佳估算值。
2、单次测量: Sx具有与相同的概率含义,即测量列中任一次测量值的偏差落在区间Sx内的概率为68.3%。 niixnx111)(12nxxsniixn次测量的标准偏差:实际测量一般取n=610即可 。) 1()(12nnxxnSSniixx2 测量不确定度和测量结果的报道一测量不确定度的概念(1)定义设某被测量X的测量结果为,误差限为u,则 u越大,表示真值可能出现的范围越大,真值不确定程度也越大。 u:测量不确定度,表示由于测量误差的存在而对被测量值的真值不能确定的程度。uxXuxuXx(2)不确定度的分类A类分量uA:可以用统计方法计算的误差。B类分量uB:用非统计其他方法估算的误差(如仪器误
3、差). 应当注意,不确定度和误差是两个不同的概念。误差是指测量值与真值之差。不确定度是表示误差可能存在的范围。 二.测量不确定度的评定 对测量不确定度的评定,常以估计标准偏差去表示大小,称其为标准不确定度。1.A类标准不确定度的评定)1()(12 nnxxnSSuniixxA 2B类标准不确定度的评定 其中系数 是把仪器误差仪转换为标准误差 仪时的变换系数。3仪仪仪仪 Bu3三.合成标准不确定度uC2222)3()(仪仪 xBACSuuu ninkiBiAikiciCuuuU112212 对于受多个(如k个)误差来源影响的直接测量,如果不确定度的各个分量彼此独立,则测量结果的合成不确定度uC,
4、用广义方和根法计算评定: 4.标准不确定度的传递合成公式 对于间接测量量y=f(x1、x2、xn),设直接测量量x1、x2、xn互相独立,且相应的标准不确定度分别为u1、u2、,un。 当间接测量的函数式为积商(或含和差的积商)形式时,为使运算简便起见, 2222222121)()()(nncuxyuxyuxyu 2222222121)ln()ln()ln(nncuxyuxyuxyyu21xxy2221xxcuuu 21xxy21xxy 2221)()(21xuxuyuxxc 函数的表达式函数的表达式 不确定度的传递公式不确定度的传递公式或或nmkxxxy321 232222212)()()(
5、321xunxumxukyuxxxc 常用函数的不确定度传递公式 例:函数 的不确定度传递公式。解:先对函数式取对数,得对各自变量求偏导数得:代入不确定度传递公式,得:nmkxxxy321 321lnlnlnlnxnxmxky 332211,xnxyxmxyxkxy232222212)()()(321xunxumxukyuxxxy 三测量结果报道 为了既能反映测量结果又能反映测量结果的可靠程度,对物理量x测量的最终结果应按如下形式表达:xUxx (单位)(单位)(P=0.683)%100 xUExx ux:一般取一位(特殊情况可以取2位)有效数字 :最后一位与不确定度的最后一位对齐 Ex:取一
6、位或两位有效数字。x例用螺旋测微计测一铁球的直径d,数据记录于下表,请报道测量结果。螺旋测微计(No.5310,允差:0.004mm),零点读数为-0.004mm,表格内数据单位:mm。/d=13.217mm.n12345678直径直径Di13.21713.20813.218 13.209 13.215 13.207 13.213 13.215 修正修正值值di 13.221 13.212 13.222 13.213 13.219 13.211 13.217 13.219 偏差偏差 0.004 -0.005 0.0050-0.0040.0020 -0.006 0.000 0.002 解:(1)
7、修正螺旋测微计的零点误差: di=Di-(-0.004)mm,填入上表:(2)计算平均值:(3)计算测量值的偏差,填入上表。(4)计算不确定度mmd217.138219.13212.13221.13 mmnnxxSuidA0015. 0)18(8)002. 0()005. 0()004. 0()1()(2222 )(0023.03004.03mmuB 仪仪)(0027. 00023. 00015. 02222mmuuuBAc d=(13.2170.003)mm (P=0.683) Ed=0.003/13.217=0.022% d,Ed。 是否有错?3 有效数字及其运算 一有效数字的概念1有效数
8、字定义及其意义先看一个例子:用米尺(最小刻度是1mm)测量钢棒的长度:4.26cm,4.27cm,或4.28cm?“4.2” -确切数字6、7、8(第三位数)可疑数字L=4.2?cm有效数字:测量结果的第一位非零数字起到最末1位可疑数字(误差所在位)止的全部数字。有效数字的意义:其位数反映所使用仪器的测量精度和测量结果的准确度。如:某物体长度的两个测量结果分别为:1.3500(cm)5位有效数字,可靠数字:1.350,可疑数字:0;可能是螺旋测微计测的,精度高。1.35(cm)3位有效数字,可靠数字:1.3,可疑数字:5;可能是米尺测的,精度低。注意:小数点后的“0”代表有效数字,不可随意取舍
9、。2、测量结果有效数字位数的确定(1)不确定度位数一般只取一位,若首位是1时可取两位。不确定度的尾数只进不舍。相对不确定度为百分之几,一般只取一、两位。(2)测量结果(平均值)位数 由不确定度决定测量结果的有效位数,即测量结果有效数字最后一位应与不确定度所在位末位对齐。例如:U=(6.0400.005)(V). g=(981.21.8)cms-2.(3)有效数字尾数舍入规则“小于5则舍,大于5则入,等于5凑偶”。例3-1:将下列数值取四位有效数字。3.141593.142(入) 2.717292.717(舍) 4.5105004.510。(凑偶) 4.5115004.512。(凑偶)(4)同一
10、个测量值,其精度不应随单位变换而改变。A)十进制单位的变换,有效数字位数保持不变。363633105 . 21050. 200000250. 050. 2mmmcmV mmmmcml 13000010300. 10 .13000.135B)非十进制单位变换:保持误差所在位在单位变换后还是有效数字的末位。例如: 用弧度表示。 粗略判断其误差不小于0.1o。若要改用弧度为单位,则先换算其误差约为:故o5 .93 rad002.01.0180rad632.15.931803.测量结果的科学表示方法 测量结果的表示,一般应采用科学表示法,即用有效数字乘以10的幂指数的形式来表示。一般小数点前只取一位数
11、字,幂指数不是有效数字。例如:1.5kg可写成1.5103g,不能写成1500g。(52341)km应写成(5.2340.001)106m。(0.0004560.000003)s应写成(4.560.03)10-4s。二.有效数字的运算规则1.加、减法运算:以参与运算各量中有效数字最后一位位数最高的为准,并与之取齐。例:3.86-1.801+5.7=7.8,结果是两位有效数字。因为小数点后的第一位已经有误差(可疑)了,保留小数点后两位数字无意义。有效数字只取一位可疑数字。2.乘、除法运算 以参加运算各量中有效数字最少的为准,结果原则上与有效数字最少的相同,但当结果第一位数是1、2、3时,可多取一
12、位。例3-2:A=80.5,B=0.0014,C=3.08326, D=764.9,求解 3.对数法运算 对数运算结果的有效数字位数,其尾数与真数的有效数字位数相同。例: lg3.27=0.514 lg220.2=2.3428? DABCN4105 . 476508. 30014. 05 .80 DABCN4.指数法运算:指数运算结果的有效数字位数与指数的小数点后的位数相同(注意包括紧接小数点后的零)。 5.三角函数法运算 三角函数计算结果的有效数字与角度的有效数字位数相同。例: Sin43.43o=0.6875 Sin30o07= Sin30.12o=0.5018575. 5106 . 53
13、2.56234110 取取成成19. 11885022. 110075. 0取取成成 6.对其他函数运算我们给出一种简单直观的方法,即将自变量可疑位上下变动一个单位,观察函数结果在哪一位上变动,结果的可疑位就取在该位上。 如求 ,因为所以取2025. 30605405. 124. 320 0607039. 125. 320 0608669. 126. 320 0607. 125. 320 上面给出的各函数运算例子也可用这种方法来确定结果的有效数字位数。7.对一个包含几种不同形式运算的运算式,应按上述的运算原则按部就班进行运算。必须注意,运算中途得到的中间结果应比按有效数字运算规则规定的多保留一
14、位,以防止由于多次取舍引入计算误差,但运算最后仍应舍去。 4 常用数据处理方法 正确处理实验数据是实验能力的基本训练之一。 根据不同的实验内容、不同的要求,可以采取不同的数据处理方法。 下面介绍物理实验中较常用的数据处理方法。一列表法一列表法结果一目了然,便于查对,记录的最好方法。列表要求: 1表格设计要尽量简明、合理,重点考虑如何能完整地记录原始数据及揭示相关量之间的函数关系;2各标题栏中应标明物理量的名称(或符号)和单位;3数据填写要正确反映测量数据的有效数字,而且数据书写应整齐清楚;4.与表格有关的说明和参数。包括表格名称、编号,实验条件。如:t(oC) 20.0 30.0 40.0 5
15、0.0 60.0 70.0 R升升温温1.2821.3231.3701.4251.4701.513降降温温1.2751.3181.3701.4151.4681.510平平均均1.2781.3201.3701.4201.4691.512()表表1-5 1-5 铜丝电阻与温度关系测量记录表铜丝电阻与温度关系测量记录表测量条件:电阻箱精度位测量条件:电阻箱精度位0.010.01级,温度的级,温度的最小分度为最小分度为0.10.1o oC C。二作图图解法:把测得的一系列相互对应的实验数据及变化的情况在坐标纸上用图线直观地表示出来,然后由图线求出有关测量量的参数和经验公式。1、作图规则 作图一定要用坐
16、标纸 选好坐标纸大小和合理标注坐标分度 应该使坐标纸的最小格对应于有效数字的最后一位可靠数字,数据中可疑的一位数字在图中应能估计标出。 坐标起点不一定从0开始。 分度比例一般用坐标纸的一小格表示被测量的最后一位的1个单位、2个单位或5个单位、10个单位较好,以便于换算和描点. 标点与连线标点与连线 在一张图纸上要画出几条不同的曲线,每条曲线可采用不同的标记,如用”“”“”“”“+”等等,以示区别,并在适当位置上注明各符号代表的意义。 描点时,交叉点和中心点应是数据的最佳点。 连线一定要用直尺或曲线尺等作图工具。 采用光滑的直线或曲线时,应尽可能通过或接近大多数数据点,并使数据点尽可能均匀对称地
17、分布在曲线的两侧。 图名和图注(5)图线的线性化曲线改直如:用单摆测重力加速度g,摆长l和周期T之间的关系式为, Tl为非线性关系,但T2l则为一线性函数。(6)根据图线求出有关参数 求直线斜率和截距的具体做法:从拟合直线上取两点(不取原数据点);两点相隔要远一些,取点的坐标应在图上标出。如:lgT2245.505.555.605.655.705.755.805.855.905.956.006.056.106.156.206.256.306.356.406.456.506.556.606.656.706.756.806.856.906.957.007.057.107.157.207.257.307.357.407.457.507.557.607.657.707.757.807.857.907.958.0015.025.035.045.055.065.075.0从直线上两端取点从直线上两端取点A、B,可求,可求出直线的斜率和截距为出直线的斜率和截距为AB后得到经验公式为:后得到经验公式为:tteR034.07 .4272 )/(034. 00 .670 .22050. 6600. 7Cbo 图1 半导体热敏电阻的阻值与温度的关系