《最新小学六年级下册数学知识点第一单元.doc》由会员分享,可在线阅读,更多相关《最新小学六年级下册数学知识点第一单元.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、最新小学六年级下册数学知识点 第一单元:负数1、负数:负数是数学术语,指小于0的实数,如-3。 任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号“-”标记,如-2,-5.33,-45,-0.6等。 2、正数:大于0的数叫正数(不包括0)。 若一个数大于零(0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。 3、正数的几何意义:数轴上0右边的数叫做正数。 4、0既不是整数,也不是负数。 5、数轴:规定了原点,正方向和单位长度的直线叫数轴。 所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两
2、个实数的大小。6、数轴的三要素:原点、单位长度、正方向。 第二单元:百分数(二)1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。 几折就表示十分之几,也就是百分之几十。例如八折=10 8 =80,六折五=0.65=65。 2、成数:农业收成,经常用“成数”来表示。现广泛应用于表示各行各业的发展变化情况。 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%。 3、税率 (1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。 (2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全
3、等事业。 (3)应纳税额:缴纳的税款叫做应纳税额。 (4)税率:应纳税额与各种收入的比率叫做税率。 (5)应纳税额的计算方法:应纳税额 = 总收入 税率 4、利率 (1)存款分为活期、整存整取和零存整取等方法。 (2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。 (3)本金:存入银行的钱叫做本金。 (4)利息:取款时银行多支付的钱叫做利息。 (5)利率:利息与本金的比值叫做利率。 (6)利息的计算公式:利息本金利率存期 (7)注意:如要上利息税(国债和教育储藏的利息不纳税),则: 税后利息=利息利息
4、的应纳税额 或: 税后利息=利息利息利息税率 或: 税后利息=利息(1利息税率) 第三单元 圆柱和圆锥1、圆柱:以矩形的一边为轴,旋转一周所围成的立体图形,叫圆柱。如蜡烛、石柱、易拉罐等。 圆柱由3个面围成。圆柱的上、下两个面叫做底面;圆柱周围的面(上下底面除外),叫做侧面;圆柱的两个底面之间的距离叫做高。 2、圆柱的表面积:圆柱的表面积圆柱的侧面积两个底面的面积 S表S侧2S底2r(hr) 圆柱的侧面积底面的周长高, S侧Ch(注:c为d) 3、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。 圆柱的体积底面积高 V=Sh 或V=rh; 4、圆锥:以直角三角形边为轴,旋转一周所围成的立
5、体图形,叫圆锥。生活中经常出现的圆锥有:沙堆、漏斗、帽子等。 5、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的31 。 圆锥体积公式:V=3 1 Sh S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径 6、圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。 圆锥的表面积由侧面积和底面积两部分组成。 S=R( 360n)+r或2 1 R+r(此n为角度制,为弧度制,=( 180 n ) 7、圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。 体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。 体积和底面
6、积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。 底面积和高不相等的圆柱圆锥不相等。 第四单元:比例1、比的意义: (1)像2.4:1.660:40这样表示两个比相等的式子叫做比例。 (2)两个数相除又叫做两个数的比。“:”是比号,读作“比”。 (3)组成比例的四个数,叫做比例的项。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 (4)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 (5)比值通常用分数表示,也可以用小数表示,有时也可能是整数。 (6)比的后项不能是零。 (7)根据分数与除法的关系,可知比的前项相当于分子,后
7、项相当于分母,比值相当于分数值。 2、比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。 3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。 根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。 4、比例尺:图上距离:实际距离=比例尺 要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。 线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。 5、按比例分配: 在农业生产和日常生活中,常常需要把一个数量按照一定的
8、比来进行分配。这种分配的方法通常叫做按比例分配。 方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 6、比例的意义:比例的意义 表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。 两端的两项叫做外项,中间的两项叫做内项。 7、比例的性质:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。 8、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。 9、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示 x y =k(一定) 10、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示xy=k(一定)