最新半导体物理第三章PPT课件.ppt

上传人:豆**** 文档编号:33411528 上传时间:2022-08-11 格式:PPT 页数:102 大小:2.03MB
返回 下载 相关 举报
最新半导体物理第三章PPT课件.ppt_第1页
第1页 / 共102页
最新半导体物理第三章PPT课件.ppt_第2页
第2页 / 共102页
点击查看更多>>
资源描述

《最新半导体物理第三章PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新半导体物理第三章PPT课件.ppt(102页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Hunan University of Science and Technology2第三章第三章 半导体中载流子的统计分布半导体中载流子的统计分布1 状态密度状态密度2 费米能级和载流子的统计分布费米能级和载流子的统计分布3 本征半导体的载流子浓度本征半导体的载流子浓度4 杂质半导体的载流子浓度杂质半导体的载流子浓度5 一般情况下的载流子统计分布一般情况下的载流子统计分布6 简并半导体简并半导体Hunan University of Science and TechnologyHunan University of Science and TechnologyHunan University

2、 of Science and TechnologyHunan University of Science and TechnologyHunan University of Science and TechnologyHunan University of Science and TechnologyHunan University of Science and Technology9v 计算不同半导体的状态密度计算不同半导体的状态密度考虑等能面为球面的情况,且假设极值位于k=0: 导带底E(k)与k的关系 把能量函数看做是连续的,则能量EE+dE之间包含的k空间体积为4p pk2dk,所以

3、包含的量子态总数为 将k用能量E表示:*222)(ncmkEkEdkkVdZ23482pp2*2/12/1*)()2(dEmkdkEEmkncn3.1.2 状态密度状态密度Hunan University of Science and Technology10 代入式代入式(3-3)(3-3)得到:得到:v 根据公式,各向同性半导体导带底附近状态密度:根据公式,各向同性半导体导带底附近状态密度:v 价带顶附近状态密度价带顶附近状态密度dEEEmVdZcn21323*3)()2(2p21323*2)()2(2)(cncEEmVdEdZEgp21323*2)()2(2)(EEmVEgvpvp(3-

4、5)(3-8)Hunan University of Science and Technology11状态密度与能量的关系状态密度与能量的关系表明:表明:导带底(价带顶)附近单位能量间隔内的量子态数目,随着电子(空穴)的能量增加按抛物线关系增大。即电子(空穴)的能量越大,状态密度越大。Hunan University of Science and Technology12对于各向异性,等能面为椭球面的情况对于各向异性,等能面为椭球面的情况 设导带底共有s个对称椭球,导带底附近状态密度为: 对硅、锗等半导体,其中的v mdn称为导带底电子状态密度有效质量。对于对于Si,导带底有六个对称状态,导带

5、底有六个对称状态,s=6,mdn =1.08m0对于对于Ge,s=4,mdn =0.56m021323*2)()2(2)(cncEEmVEgp31232*)(tldnnmmsmmHunan University of Science and Technology13v 同理可得价带顶附近的情况同理可得价带顶附近的情况n价带顶附近E(k)与k关系n价带顶附近状态密度也可以写为: 但对硅、锗这样的半导体,价带是多个能带简并的,相应的有重和轻两种空穴有效质量,所以公式中的mp*需要变化为一种新的形式。*22222)()(pzyxvmkkkEkE21323*2)()2(2)(EEmVEgvpvpHun

6、an University of Science and Technology14v 对硅和锗,式中的对硅和锗,式中的 nmdp称为价带顶空穴状态密度有效质量n对于Si,mdp=0.59m0n对于Ge,mdp=0.37m03223*)()(23hplpdppmmmmHunan University of Science and Technology15v 把半导体中的电子看作是近独立体系,即认为电子之间的相互作相互作用很微弱用很微弱.v 电子的运动是服从量子力学规律的,用量子态描述它们的运动状态.电子的能量是量子化量子化的,即其中一个量子态被电子占据,不影响其他的量子态被电子占据.并且每一能级

7、可以认为是双重简并的,这对应于自旋的两个容许值.v 在量子力学中,认为同一体系中的电子是全同全同的,不可分辨的.v 电子在状态中的分布,要受到泡利不相容原理泡利不相容原理的限制. 适合上述条件的量子统计适合上述条件的量子统计, ,称为称为费米费米- -狄拉克狄拉克统计统计. .3.2 3.2 费米能级和载流子的统计分布费米能级和载流子的统计分布Hunan University of Science and Technology163.2.1 3.2.1 费米分布函数费米分布函数(1)(1)费米分布函数的意义费米分布函数的意义在热平衡状态下,电子按能量在热平衡状态下,电子按能量大小具有一定的统计

8、分布规律大小具有一定的统计分布规律一定温度下:一定温度下: 低能量的量子态低能量的量子态 高能量的量子态高能量的量子态 电子跃迁单个电子单个电子大量电子大量电子能量时大时小,经常变化能量时大时小,经常变化电子在不同能量的量子态电子在不同能量的量子态上统计分布概率是一定的上统计分布概率是一定的Hunan University of Science and Technology17EF:费米能级或费米能量费米能级或费米能量,与温度、半导体材料的导电与温度、半导体材料的导电 类型、杂质的含量以及能量零点的选取有关。类型、杂质的含量以及能量零点的选取有关。 )exp(110FTkEEEfk0 :玻耳兹

9、曼常数玻耳兹曼常数T : 绝对温度绝对温度:)(Ef电子的费米分布函数,它是描写热平衡状态下,电子电子的费米分布函数,它是描写热平衡状态下,电子在允许的量子态上如何分布的一个统计分布函数。在允许的量子态上如何分布的一个统计分布函数。 量子统计理论量子统计理论对于能量为对于能量为E的一个量子态的一个量子态被电子占据的概率为被电子占据的概率为f(E)为为:服从服从泡利不相容原理泡利不相容原理的电子遵循费米统计律。的电子遵循费米统计律。一个很重要的物理参数一个很重要的物理参数在一定温度下电子在各量子态上的统计分布完全确定在一定温度下电子在各量子态上的统计分布完全确定Hunan University

10、of Science and Technology18将半导体中大量电子的集体看成一个热力系统,将半导体中大量电子的集体看成一个热力系统,由统计理论证明,费米能级由统计理论证明,费米能级EF是系统的化学势:是系统的化学势: TFNFE:系统的化学势,:系统的化学势, F:系统的自由能:系统的自由能 思考思考:能量为能量为E的量子态被空穴占据的概率是多少的量子态被空穴占据的概率是多少?意义:意义:当系统处于热平衡状态,也不对外界作功的情况下,当系统处于热平衡状态,也不对外界作功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的系统中增加一个电子所引起系统自由能的变化,等于系统的化学势

11、,也就是等于系统的费米能级。而处于热平衡状态的化学势,也就是等于系统的费米能级。而处于热平衡状态的系统有统一的化学势,所以系统有统一的化学势,所以处于热平衡状态的电子系统有统处于热平衡状态的电子系统有统一的费米能级一的费米能级。 Hunan University of Science and Technology19Ef(E)EFT=0k被电子占据的被电子占据的概率概率100%被电子占据被电子占据的概率的概率0%1费米分布函数与费米分布函数与温度关系曲线温度关系曲线0K 300K1000K1500K(2)(2)费米分布费米分布函数函数 f(E)的特性的特性 )exp(110FTkEEEf0)(

12、,1)(,FFEfEEEfEE则则T=0K时时EF可看成量子态是否被电子占据的一个界限。 2/1)(,2/1)(,2/1)(,FFFEfEEEfEEEfEE则则则T0K时时 EF是量子态基本上被电子占据或基本上是空的一个标志。Hunan University of Science and Technology20u 一般可以认为,在温度不很高时,能量大于费米能级的量子态一般可以认为,在温度不很高时,能量大于费米能级的量子态 基本上没有被电子占据,而能量小于费米能级的量子态基本上基本上没有被电子占据,而能量小于费米能级的量子态基本上 为电子所占据,而为电子所占据,而电子占据费米能级的概率在各种温

13、度下总是电子占据费米能级的概率在各种温度下总是 1/2。(EEF5k0T, f(E)0.007; EEF0.993 )u 费米能级的位置比较直观地标志了电子占据量子态的情况费米能级的位置比较直观地标志了电子占据量子态的情况, (通常就说费米能级标志了电子填充能级的水平通常就说费米能级标志了电子填充能级的水平)。)。EF高,则高,则说明有较多的能量较高的量子态上有电子。说明有较多的能量较高的量子态上有电子。u 温度升高,电子占据能量小于费米能级的量子态的概率下降,温度升高,电子占据能量小于费米能级的量子态的概率下降,而占据能量大于费米能级的量子态的概率增大。而占据能量大于费米能级的量子态的概率增

14、大。 Hunan University of Science and Technology213.2.2 3.2.2 玻耳兹曼分布函数玻耳兹曼分布函数 )exp(110FTkEEEfTkEE0F1exp0FTkEE TkETkETkEEeeeEf00F0FB令令 TkEAeEf0B玻耳兹曼分布函数玻耳兹曼分布函数TkEeA0F在在一定一定T时,电子占据能量为时,电子占据能量为E的量子态的概率的量子态的概率由指数因子由指数因子 所决定所决定。TkEe0量子态为电子占据的概率很小,泡利原理量子态为电子占据的概率很小,泡利原理失去作用,两种统计的结果变成一样了失去作用,两种统计的结果变成一样了 Hu

15、nan University of Science and Technology22 :Ef1能量为能量为E的量子态的量子态不被电子占据的概率不被电子占据的概率也就是量子态也就是量子态被空穴占据的概率被空穴占据的概率 TkEEEf0Fexp111TkEE0FTkEeB0F TkEBeEf01 TkEAeEf0B玻耳兹曼分布函数玻耳兹曼分布函数能量为能量为E的量子态被电子占据的概率的量子态被电子占据的概率空穴的玻耳兹曼分布函数空穴的玻耳兹曼分布函数 说明说明:时,TkEE0F空穴占据能量空穴占据能量为为E的量子态的概率很小的量子态的概率很小即即这些量子态几乎都被电子所占据了这些量子态几乎都被电子

16、所占据了Hunan University of Science and Technology23非简并性系统非简并性系统:服从玻耳兹曼统计律的电子系统:服从玻耳兹曼统计律的电子系统 简并性系统简并性系统:服从费米统计律的电子系统:服从费米统计律的电子系统思考思考:导带中绝大多数电子分布在导带底附近导带中绝大多数电子分布在导带底附近 价带中绝大多数空穴分布在价带顶附近价带中绝大多数空穴分布在价带顶附近半导体中,半导体中,EF常位于禁带内,且与导带底或价带顶的距离远大于常位于禁带内,且与导带底或价带顶的距离远大于k0Tu 对对导带中的所有量子态导带中的所有量子态来说来说 被电子占据的概率,一般都满

17、足被电子占据的概率,一般都满足 f(E)0K:本征激发,电子和空穴成对出现,n0=p0Hunan University of Science and Technology41TkEENpTkEENn0Fvv00Fcc0expexpn0=p0TkEENTkEEN0vFv0Fccexpexp取对数取对数cv0vcFln22NNTkEEENc、Nv代入代入 *n*p0vcFln432mmTkEEE所得本征半导体的费米能级所得本征半导体的费米能级EF常用常用Ei表示表示 intrinsicHunan University of Science and Technology42*n*p0vcFiln43

18、2mmTkEEEE讨论讨论:以下在2ln0 . 7:GaAs66. 0:Ge55. 0:Si*n*p*n*p*n*p*n*pmmmmmmmmEF约在禁带中线附近约在禁带中线附近1.5k0T范围内范围内 左右约为,室温eV1,eV026. 0K300sAaG,eG,iS0gETkT本征半导体费米能级Ei基本上在禁带中线处例外:锑化铟,室温时例外:锑化铟,室温时Eg0.17eV, , Ei已远在禁带中线之上已远在禁带中线之上32*n*pmmHunan University of Science and Technology43本征载流子浓度本征载流子浓度 :TkENNnnn0g21vcp0i2ex

19、pu 一定的半导体材料一定的半导体材料(Eg),ni随温度的升高而迅速增加。随温度的升高而迅速增加。u 同一温度同一温度T时,不同的半导体材料,时,不同的半导体材料,Eg越大,越大,ni越小。越小。2i000gvc000g21vc00iexp2expnpnTkENNpnTkENNpnn说明:在一定温度下,任何说明:在一定温度下,任何非简并半导体非简并半导体的热平衡载流子浓度的热平衡载流子浓度的乘积等于该温度时的的乘积等于该温度时的本征载流子浓度本征载流子浓度ni的平方的平方,与所含杂质,与所含杂质无关,即上式适用于本征、以及非简并的杂质半导体。无关,即上式适用于本征、以及非简并的杂质半导体。本

20、征:本征:非简并:非简并:Hunan University of Science and Technology44将将Nc,Nv表达式代入表达式代入 TkEhmmTkn0g343*n*p230i2exp22ph、k0 的数值,电子质量的数值,电子质量m0TkETmmmn0g234320*n*p15i2exp1082. 4TkENNnnn0g21vcp0i2exp TETEEggdd,0 TkEkTmmmngo0023432*n*p15i20exp2exp1082. 4Hunan University of Science and Technology45据此,作出 关系曲线,基本上是一直线TT

21、n/1ln2/3i讨论:讨论:一般半导体中,载流子主要来源于杂质电离,而将本征激发一般半导体中,载流子主要来源于杂质电离,而将本征激发忽略不计。忽略不计。在本征载流子浓度没有超过杂质电离所提供的载流子浓度的在本征载流子浓度没有超过杂质电离所提供的载流子浓度的温度范围,杂质全部电离,载流子浓度是一定的,器件才能温度范围,杂质全部电离,载流子浓度是一定的,器件才能稳定工作。稳定工作。每一种半导体材料制成的器件都有一定的极限工作温度,超每一种半导体材料制成的器件都有一定的极限工作温度,超过这一温度,本征激发占主要地位,器件就失效了。过这一温度,本征激发占主要地位,器件就失效了。硅器件的极限工作温度硅

22、器件的极限工作温度520K,锗(,锗(370K,Eg小),小),GaAs(720K,Eg比比Si大),适宜于制造大功率器件。大),适宜于制造大功率器件。本征载流子浓度随温度迅速变化,器件性能不稳定,所以制本征载流子浓度随温度迅速变化,器件性能不稳定,所以制造半导体器件一般都用含有适当杂质的半导体材料。造半导体器件一般都用含有适当杂质的半导体材料。从直线斜率可得T=0K时的禁带宽度Eg(0)=2k0斜率Hunan University of Science and Technology463.4 3.4 杂质半导体的载流子浓度杂质半导体的载流子浓度1.1.杂质能级上的电子和空穴杂质能级上的电子和

23、空穴电子占据杂质能级的概率可用费米分布函数决定吗?电子占据杂质能级的概率可用费米分布函数决定吗? 电子占据电子占据未电离的施主杂质能级未电离的施主杂质能级已电离的受主杂质能级已电离的受主杂质能级Hunan University of Science and Technology47 TkEEEf0Fexp11费米分布函数能带中的能级可以容纳自旋方向相反的两个电子。能带中的能级可以容纳自旋方向相反的两个电子。 施主杂质能级或者被一个有任一自旋方向的电子所占据,施主杂质能级或者被一个有任一自旋方向的电子所占据,或者不接受电子,或者不接受电子,不允许同时被自旋方向相反的两个电子不允许同时被自旋方向相

24、反的两个电子所占据。所占据。可可以以证证明明 TkEEgEfD0FDDexp111 TkEEgEfA0AFAexp111空穴占据受主能级的概率:空穴占据受主能级的概率:电子占据施主能级的概率:电子占据施主能级的概率:Hunan University of Science and Technology48施主浓度施主浓度ND和受主浓度和受主浓度NA就是杂质的量子态密度就是杂质的量子态密度电子和空穴占据杂质能级的概率分别是电子和空穴占据杂质能级的概率分别是 EfEfAD和施主能级上的电子浓度nD为: TkEEgNEfNnD0FDDDDDexp11 TkEEgNEfNpA0AFAAAAexp11 即

25、没有电离的施主浓度即没有电离的施主浓度 TkEEgNEfNnNnD0FDDDDDDDexp11 TkEEgNEfNpNpA0AFAAAAAAexp11受主能级上的空穴浓度pA为:电离施主浓度为:电离受主浓度为: 即没有电离的受主浓度即没有电离的受主浓度 Hunan University of Science and Technology49讨论:讨论:杂质能级与费米能级的杂质能级与费米能级的相对位置相对位置明显反映了电子和空穴占据杂质明显反映了电子和空穴占据杂质能级的情况。能级的情况。当当 说明了什么?说明了什么?当当 重合时,重合时, ,即施主杂质有,即施主杂质有1/3电离,电离,还有还有2

26、/3没有电离没有电离(取取gD=2)。1. 同理,同理,当当EF远在远在EA之上时,受主杂质几乎全部电离;之上时,受主杂质几乎全部电离;当当EF远在远在EA之下时,受主杂质基本上没有电离;当之下时,受主杂质基本上没有电离;当EF等于等于EA时,取时,取gA=4受主杂质有受主杂质有1/5电离,电离,4/5没有电离。没有电离。 ( 思考题思考题)TkEE0FD1exp0FDTkEE0DnDDNn FDEE 与332DDDDNnNn而Hunan University of Science and Technology50区别何在?3.4.2 n型半导体的载流子浓度(只含一种施主杂质的型半导体的载流子

27、浓度(只含一种施主杂质的n型半导体)型半导体)Hunan University of Science and Technology51Hunan University of Science and Technology52电中性条件: ADDpnnppnn0000:常用总方程TkEENpTkEENn0Fvv00Fcc0exp,expTkEENn0FDDDexp21求出EF(关键所在)方法:方法:利用电中性条件利用电中性条件确定该状态的费米能级确定该状态的费米能级T、EF确定后,确定后, 计算计算 00np 或求出2i00npn00pn 或Hunan University of Science

28、and Technology53)exp(21expexp00Fvv0FccTkEENTkEENTkEENFDD(1)(1)低温弱电离区低温弱电离区如何求EF,较困难?按不同温度范围讨论( 远比远比ND为小)为小)Dn1exp0FDTkEETkEENTkEEN0FDD0Fccexp21expcD0DcF2ln22NNTkEEE与温度与温度 、杂质浓度、杂质浓度、杂质种类有关杂质种类有关大部分施主杂质能级仍为电子所占据,少量施主电离(弱电离)大部分施主杂质能级仍为电子所占据,少量施主电离(弱电离)价带中只靠本征激发跃迁至导电的电子数更少价带中只靠本征激发跃迁至导电的电子数更少00D0pnn取对数

29、简化取对数简化Hunan University of Science and Technology54讨论讨论 线处导带底和施主能级的中,2DcFK0limEEETTEddF低温弱电离区低温弱电离区EF与与T关系关系可以了解可以了解EF随温度升高的变化情况随温度升高的变化情况232ln2d2lnd22ln2ddcD0cc0cD0FNNkTNNTkNNkTET0k时,时,Nc0,dEF/dT+ ,上升快,上升快T,Nc dEF/dTTT,dEF/dTNDEF下降至下降至 以下以下2DcEE 当温度升高到当温度升高到EF=ED时,时, 1exp0DFTkEE施主杂质有施主杂质有1/3电离电离 cD

30、0DcF2ln22NNTkEEEHunan University of Science and Technology57当温度升高至大部分杂质都电离时称为强电离。 TkEETkE0FD0DF, 1exp或 TkEENEfNnNn0FDDDDDDDexp211cD0cFD0FcclnexpNNTkEENTkEEN)(n:,;,:)(:iFiFDcFDDcFwhyEEcEETNEENTNNbTEa之上在型一定时越大一定时大于一般!与低温弱电离的区别!和施主杂质浓度所决定由温度饱和区:n0=ND,此时载流子浓度与T无关(3)(3)强电离区强电离区DDNn 此时,此时,Hunan University

31、 of Science and Technology58处于饱和区和完全本征激发之间时称为过渡区(4)(4)过渡区过渡区0D0pNn此时,此时,v本征激发相对杂质电离所提供的电子不能再忽略本征激发相对杂质电离所提供的电子不能再忽略Hunan University of Science and Technology592i00D00npnNnp如何求如何求EF!过渡区载流子浓度过渡区载流子浓度解如下联立方程:解如下联立方程:可以分情况讨可以分情况讨论,论,ND和和ni相相对大小对大小Hunan University of Science and Technology60T,n0ND,p0ND电中

32、性条件:电中性条件:n0=p0杂质浓度越高,达到本征激发起主要作用的温度也越高。杂质浓度越高,达到本征激发起主要作用的温度也越高。 n型硅中电子浓度与温度关系型硅中电子浓度与温度关系低温弱电离,施主杂质电离产生导带电子低温弱电离,施主杂质电离产生导带电子T增加,费米能级从施主能级以上下降到以下增加,费米能级从施主能级以上下降到以下EDEF k0T,饱和区,饱和区T增加,本征激发作用加强,过渡区,增加,本征激发作用加强,过渡区,EF下降下降电子由杂质电离和本征激发共同作用电子由杂质电离和本征激发共同作用T增加,本征激发作用为主,增加,本征激发作用为主,EF下降到禁带中线下降到禁带中线载流子浓度急

33、剧上升载流子浓度急剧上升(5)(5)高温本征激发区高温本征激发区Hunan University of Science and Technology61(6).p p型半导体的载流子浓度(作业)型半导体的载流子浓度(作业)低温弱电离区:低温弱电离区: TkENNpNNTkEEE0A21vA0vA0AvF2exp22ln22强电离(饱和区):强电离(饱和区): v0vFAlnNNTkEEA0Np TkENNDv0AAexp2AANDp过渡区:过渡区: 1212A2iA2i0212A2iA0iA10iF411241122NnNnnNnNpnNTshkEE高温本征激发区;(同前)高温本征激发区;(同

34、前)Hunan University of Science and Technology62硅的费米能级与温度及杂质浓度的关系硅的费米能级与温度及杂质浓度的关系Hunan University of Science and Technology63讨论:u 杂质半导体的载流子浓度和费米能级由温度和杂质浓度所决定。杂质半导体的载流子浓度和费米能级由温度和杂质浓度所决定。 ( 与本征区别与本征区别)u 对于杂质浓度一定的半导体,随着温度的升高,载流子则是从以对于杂质浓度一定的半导体,随着温度的升高,载流子则是从以杂质电离为主要来源过渡到以本征激发为主要来源的过程,杂质电离为主要来源过渡到以本征激发

35、为主要来源的过程,EF从从杂质能级附近杂质能级附近禁带中线处。禁带中线处。u 温度一定时,费米能级的位置由杂质的种类和浓度决定,费米能温度一定时,费米能级的位置由杂质的种类和浓度决定,费米能级的位置反映导电类型和掺杂水平。级的位置反映导电类型和掺杂水平。Hunan University of Science and Technology64不同掺杂情况下的费米能级不同掺杂情况下的费米能级电子填充水平最低,电子填充水平最低,EF最低最低Hunan University of Science and Technology65过渡区过渡区 导带电子来源于全部杂质电离和部分本征激发 强电离(饱和)强电

36、离(饱和)导带电子浓度等于施主浓度高温本征激发区高温本征激发区 n0ND p0ND 同上中间电离中间电离导带电子从施主电离产生 p0=0 n0=弱电离弱电离导带电子从施主电离产生费米能级费米能级载流子浓度载流子浓度电中性电中性特征特征Dn TkENNn0D21cD02exp2cD0DcF2ln22NNTkEEE2cFk0limDtEEE)(31,32DFD0DDEENnNnDFDcFDc22EEEEENN极限以下下降到DDNn D0Nn DFcD0cFlnEENNTkEE0D0pNnD2iD0NnNniD10iF2nNTshkEE00pn iFEE TkENNngVCi0212expHunan

37、 University of Science and Technology66思考题:指出所示曲线不同的区域特征思考题:估算一下室温时硅中施主杂质达到全部电离时 (90)的杂质浓度上限。思考题:杂质基本上全部电离( 90)所需的温度?Hunan University of Science and Technology67思路思路:强电离区:强电离区 全部电离:全部电离:TkEETkE0FD0DF, 1exp或 TkEENnTkEENEfNnNn0FDDD0FDDDDDDDexp2exp211可以写成:代入代入EF TkENNDNDn0DcDDDexp2,其中令未电离取未电离取1010的温度可以

38、得到基本全部电离代入,cNHunan University of Science and Technology68v少数载流子: n型半导体中的空穴,型半导体中的空穴,p型半导体中的电子型半导体中的电子 少数载流子浓度少数载流子浓度( (强电离区为例强电离区为例) )知少数载流子浓度随温度迅速变化;知少数载流子浓度随温度迅速变化;Hunan University of Science and Technology69v 少数载流子与温度的关系Hunan University of Science and Technology703.5 3.5 一般情况下载流子统计分布v 一般情况的电中性条件一

39、般情况的电中性条件 同时含一种施主杂质和一同时含一种施主杂质和一种受主杂质种受主杂质 同时含若干种施主杂志和同时含若干种施主杂志和若干种受主杂质若干种受主杂质Hunan University of Science and Technology71同样可以按如下温区进行讨论,同样可以按如下温区进行讨论, 低温弱电离区(部分电离区);低温弱电离区(部分电离区); 强电离区(非本征区);强电离区(非本征区); 过渡区;过渡区; 高温本征区;高温本征区;下面讨论下面讨论NDNA的半导体情况。的半导体情况。Hunan University of Science and Technology72v NDN

40、A情况情况(含少量受主杂质的(含少量受主杂质的n型半导体)型半导体)1exp200TkEENNnDFDA杂质弱电离情况下杂质弱电离情况下: NDNA,则受主完全电离,则受主完全电离,pA=0 由于本征激发可以忽略,则由于本征激发可以忽略,则电中性条件电中性条件为为DDDADDAnnNNnNnNn00则有则有2)(4)(22120ADcAcAcNNNNNNNn施主杂质未完全电离情况下载流子浓度的普遍公式施主杂质未完全电离情况下载流子浓度的普遍公式)exp(210TkENNDCcHunan University of Science and Technology73讨论讨论: : 极低温区电离情况

41、,极低温区电离情况,假定假定NDNA在极低的温度下,电离施主提供的电子,除了填满在极低的温度下,电离施主提供的电子,除了填满NA个受个受主以外,激发到导带的电子只是极少数,即主以外,激发到导带的电子只是极少数,即n0NA,于是,于是有:有:TkEENNNNnDCAADC00exp2 将其代入电子浓度公式中,得出费米能级将其代入电子浓度公式中,得出费米能级EF为为AADDFNNNTkEE2ln0在这种情况下,当温度趋向于在这种情况下,当温度趋向于0K时,时,EF与与ED重合。在极低重合。在极低的温度范围内,随着温度的升高,费米能级线性地上升的温度范围内,随着温度的升高,费米能级线性地上升. .H

42、unan University of Science and Technology74TkEENNnDCDC02102exp2这种情况与只含一种施主杂质这种情况与只含一种施主杂质ND时一致,这种条件下,时一致,这种条件下,施主主要是向导带提供电子,少量受主的作用可以忽施主主要是向导带提供电子,少量受主的作用可以忽略,此时费米能级也在施主能级略,此时费米能级也在施主能级ED之上变化。之上变化。当温度继续上升当温度继续上升, ,进入进入NANcND的温度范围内的温度范围内(3-85)(3-85)式简化为式简化为此时的费米能级的为此时的费米能级的为: :cDDCFNNTkEEE2ln2210Huna

43、n University of Science and Technology75杂质饱和电离情况杂质饱和电离情况: : 当温度升高使施主全部电离,所提供的当温度升高使施主全部电离,所提供的ND个电子,除了个电子,除了填满填满NA个受主外个受主外, ,其余全部激发到导带,半导体进入饱和电离其余全部激发到导带,半导体进入饱和电离区(强电离区),本征激发可忽略。电中性条件区(强电离区),本征激发可忽略。电中性条件: : ADNNn0费米能级在费米能级在ED之下之下CADCFNNNTkEEln0由由n0p0=ni2得出空穴浓度得出空穴浓度ADiNNnp20 在杂质饱和电离区,有补偿的在杂质饱和电离区,

44、有补偿的N型半导体的载流子浓度和型半导体的载流子浓度和费米能级公式,同只含一种施主杂质的费米能级公式,同只含一种施主杂质的N N型半导体对应的公型半导体对应的公式具有相同的形式式具有相同的形式, ,但用有效施主浓度但用有效施主浓度ND-NA代替了代替了NDHunan University of Science and Technology76过渡区(杂质饱和电离过渡区(杂质饱和电离本征激发)本征激发)当温度继续升高,是本征激发也成为载流子的重要来源时,当温度继续升高,是本征激发也成为载流子的重要来源时,半导体进入了过渡区,电中性条件为半导体进入了过渡区,电中性条件为:将上式与将上式与 联立,得

45、到电子和空穴浓度为:联立,得到电子和空穴浓度为: DANpNn00200inpn24)(22/1220iADADnNNNNn24)(22/1220iADADnNNNNp该形式与一种杂质半该形式与一种杂质半导体的过渡区载流子导体的过渡区载流子浓度公式相似,只不浓度公式相似,只不过把过把NDND换为有效杂质换为有效杂质浓度浓度ND-NAND-NA而已。而已。 Hunan University of Science and Technology77此时的费米能级为:此时的费米能级为:E EF F在施主能级在施主能级EDED之下,随着温度升高不断向之下,随着温度升高不断向E Ei i靠近。靠近。24)

46、()(ln2/1220iiADADiFnnNNNNTkEE高温本征激发区高温本征激发区(本征区):(本征区):当温度很高时,本征激发成为产生载流子的主要来源,半导体进入当温度很高时,本征激发成为产生载流子的主要来源,半导体进入本征区,此时费米能级本征区,此时费米能级E EF F=E=Ei i。载流子浓度为:。载流子浓度为:inpn00Hunan University of Science and Technology78小结:求解热平衡半导体载流子浓度的思路:小结:求解热平衡半导体载流子浓度的思路:一、对只含一种杂质的半导体:一、对只含一种杂质的半导体: 首先判断半导体所处的温度区域(四个);

47、 杂质弱电离区、饱和电离区、过渡区、本征区 写出电中性条件; 利用该温度区域的载流子浓度计算公式求解。二、含多种(不同)杂质的半导体:二、含多种(不同)杂质的半导体: 首先判断材料的导电类型及有效杂质浓度; 判断半导体所处的温度区域(四个); 杂质弱电离区、饱和电离区、过渡区、本征区 写出电中性条件; 利用该温度区域的载流子浓度计算公式求解。Hunan University of Science and Technology791.1.简并半导体简并半导体费米能级进入导带(或价带)的情况(重掺杂条件下) 玻尔兹曼分布TkEE0FTkEENpTkEENn0Fvv00Fcc0expexp)0( ,

48、lnAcD0cFNNNTkEE0,lnAAD0FNNNNTkEEcc一般情况下:一般情况下:NDNc或者或者(NDNA) Nc, EF在在Ec下下在在NDNc时:时:EF与与Ec重合或在之上,进入导带重合或在之上,进入导带N型半导体处型半导体处于饱和区于饱和区Hunan University of Science and Technology80说明n型掺杂水平高,导带底附近的量子态基本上已被电子占据导带中电子数目很多,导带中电子数目很多,f f( (E E)1)1不满足不满足玻耳兹曼分布玻耳兹曼分布不成立不成立考虑泡利不相容原理的作用不能用玻耳兹曼分布,必须用费米分布载流子的简并化同理可以讨

49、论价带同理可以讨论价带Hunan University of Science and Technology812.2.简并半导体载流子浓度简并半导体载流子浓度 求解简并半导体的载流子浓度的思路和前面非简并半求解简并半导体的载流子浓度的思路和前面非简并半导体中载流子浓度的求解一样。导体中载流子浓度的求解一样。导带电子浓度导带电子浓度 dEEfENnCCEEC0dETkEEEEmCnEFC1exp220213223*p引入无量纲的变数引入无量纲的变数kTEExC和和简约费米能级简约费米能级TkEECF0再利用再利用N Nc c的表达式,导带电子浓度为的表达式,导带电子浓度为02101exp2pxd

50、xxNnC p212FNCHunan University of Science and Technology82同理可得:价带空穴浓度同理可得:价带空穴浓度 TkEEFNFNpFVVV02121022pp在非简并情况下,费米能级位于离开带边较远的禁带中,即在非简并情况下,费米能级位于离开带边较远的禁带中,即 exp0CNn exp0VNp TkEETkEEVFFC00则:其中的其中的 称为称为费米积分费米积分。0212/11exp)(xdxxFTkEEFNnCFC02102p11pn或所以:Hunan University of Science and Technology83TkEEFNn

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁