《2022年初三数学二次函数知识点总结2 .pdf》由会员分享,可在线阅读,更多相关《2022年初三数学二次函数知识点总结2 .pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 1 页 共 9 页初三数学二次函数知识点总结一、二次函数概念:1 二次函数的概念: 一般地,形如2yaxbxc ( abc, , 是常数,0a) 的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a,而 bc, 可以为零二次函数的定义域是全体实数2. 二次函数2yaxbxc的结构特征: 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2abc, , 是常数, a 是二次项系数,b是一次项系数,c 是常数项二、二次函数的基本形式二次函数的基本形式2ya xhk 的性质:a 的绝对值越大,抛物线的开口越小。三、二次函数图象的平移1. 平移步骤:方法一:将抛物线解
2、析式转化成顶点式2ya xhk ,确定其顶点坐标hk,; 保持抛物线2yax 的形状不变,将其顶点平移到hk,处,具体平移方法如下:向右 (h0)【或左 (h0) 【或下 (k0)【或左 (h0)【或左 (h0)【或下 (k0)【或向下 (k0)】平移 |k|个单位y=a (x-h)2+ky=a(x-h)2y=ax2+ky=ax22. 平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移” 概括成八个字“左加右减,上加下减”方法二:cbxaxy2沿y轴平移 :向上(下)平移m个单位,cbxaxy2变成a 的符号开口方向顶点坐标对称轴性质0a向上hk,X=h xh时,y随 x 的增
3、大而增大;xh时,y随x的增大而减小;xh时,y有最小值k0a向下hk,X=h xh时,y随 x 的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 9 页第 2 页 共 9 页mcbxaxy2(或mcbxaxy2)cbxaxy2沿轴平移:向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2(或cmxbmxay)()(2)四、二次函数2ya xhk与2yaxbxc的比较从解析式上看,2ya xhk 与2yaxbxc是两种不同的表达形式,后者通过配方可以得到前者,即
4、22424bacbya xaa,其中2424bacbhkaa,五、二次函数2yaxbxc图象的画法五点绘图法:利用配方法将二次函数2yaxbxc化为顶点式2()ya xhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、 与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与 x 轴的交点10 x ,20 x ,(若与 x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y轴的交点 . 六、二次函数2yaxbxc的性质1. 当0a时,抛物线开口向上,对称轴为2bxa,顶点
5、坐标为2424bacbaa,当2bxa时,y随 x 的增大而减小;当2bxa时,y随 x 的增大而增大;当2bxa时,y有最小值244acba2. 当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随x 的增大而增大;当2bxa时,y随 x 的增大而减小;当2bxa时,y有最大值244acba七、二次函数解析式的表示方法1. 一般式:2yaxbxc ( a,b, c 为常数,0a) ;2. 顶点式:2()ya xhk ( a,h,k为常数,0a) ;3. 两根式:12()()ya xxxx(0a,1x ,2x 是抛物线与x轴两交点的横坐标). 注意:任
6、何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240bac时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2yaxbxc中, a作为二次项系数,显然0a a 决定了抛物线开口的大小和方向,a精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页第 3 页 共 9 页的正负决定开口方向,a 的大小决定开口的大小2. 一次项系数b在二次项系数a 确定的前提下,b决定了抛物线的对称轴ab的符
7、号的判定:对称轴abx2在y轴左边则0ab,在y轴的右侧则0ab,概括的说就是“左同右异”3. 常数项 cc 决定了抛物线与y轴交点的位置总之,只要abc, , 都确定,那么这条抛物线就是唯一确定的二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函
8、数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20axbxc是二次函数2yaxbxc 当函数值0y时的特殊情况 . 图象与 x 轴的交点个数: 当240bac时,图象与x 轴交于两点1200A xB x,12()xx,其中的12xx,是一元二次方程200axbxca的两根 这两点间的距离2214bacABxxa. 当0时,图象与 x轴只有一个交点; 当0时,图象与x 轴没有交点 .1当0a时,图象落在x轴的上方,无论x为任何实数,都有0y;2当0a时,图象落在x轴的下方,无论x为任何实数,都有0y2. 抛物线2yaxbxc 的图象与y轴一定相交,
9、交点坐标为(0 ,)c ;3. 二次函数常用解题方法总结: 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数2yaxbxc中 a,b, c 的符号,或由二次函数中a ,b,c 的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x轴的一个交点坐标,可由对称性求出另一个交点坐标. 二次函数考查重点与常见题型1 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数2)2(22mmxmy的图像经过原
10、点,则m的值是2 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数bkxy的图像在第一、 二、三象限内, 那么函数12bxkxy的图像大致是 ()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页第 4 页 共 9 页 y y y y 1 1 0 x -1 o x 0 x 0 1 x A B C D 3 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3) , (4,6
11、) 两点,对称轴为35x,求这条抛物线的解析式。4 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线2yaxbxc (a0)与 x 轴的两个交点的横坐标是1、3,与 y 轴交点的纵坐标是32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标. 5考查代数与几何的综合能力,常见的作为专项压轴题。由抛物线的位置确定系数的符号例 1 (1)二次函数2yaxbxc 的图像如图1,则点),(acbM在() A第一象限 B第二象限 C 第三象限 D 第四象限(2)已知二次函数y=ax2+bx+c(a0)的图象如图2 所示, ?则下列结论:
12、a、b 同号;当x=1和 x=3 时,函数值相等;4a+b=0;当 y=-2 时, x 的值只能取0. 其中正确的个数是()A1 个 B2 个 C3 个 D4 个 (1) (2) 【点评】弄清抛物线的位置与系数a,b,c 之间的关系,是解决问题的关键例 2. 已知二次函数y=ax2+bx+c 的图象与x 轴交于点 (-2 ,O)、(x1,0) ,且 1x12,与 y 轴的正半轴的交点在点 (O,2)的下方下列结论: abO ;4a+cO,其中正确结论的个数为( ) A 1个 B. 2个 C. 3个 D 4 个答案: D 会用待定系数法求二次函数解析式例 3.已知:关于x 的一元二次方程ax2+
13、bx+c=3 的一个根为x=2,且二次函数y=ax2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( ) A(2,-3) B.(2,1) C(2,3) D(3, 2) 答案: C 例 4、已知抛物线y=12x2+x-52(1)用配方法求它的顶点坐标和对称轴(2)若该抛物线与x 轴的两个交点为A、B,求线段AB的长【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系
14、。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 9 页第 5 页 共 9 页二次函数对应练习试题一、选择题1. 二次函数247yxx的顶点坐标是 ( )A.(2, 11) B.( 2,7) C.(2,11) D. (2, 3)2. 把抛物线22yx向上平移1 个单位,得到的抛物线是()A. 22(1)yx B. 22(1)yx C. 221yx D. 221yx3. 函数2ykxk和(0)kykx在同一直角坐标系中图象可能是图中的( ) 4. 已知二次函数2(0)yaxbxc a的图象如图所示, 则下列结论 : a,b 同号 ; 当1
15、x和3x时, 函数值相等 ; 40ab当2y时, x的值只能取0. 其中正确的个数是 ( ) A.1个 B.2个 C. 3个 D. 4个5. 已知二次函数2(0)yaxbxc a的顶点坐标( -1 ,-3.2 )及部分图象 ( 如图 ),由图象可知关于x的一元二次方程20axbxc的两个根分别是121.3xx和() . B.-2.3 C.-0.3 D.-3.3 6. 已知二次函数2yaxbxc的图象如图所示,则点(,)ac bc在()A第一象限B第二象限C第三象限 D 第四象限7. 方程222xxx的正根的个数为()A.0 个 B.1个 C.2个. 3 个8. 已知抛物线过点A(2,0),B(
16、-1,0),与y轴交于点 C, 且 OC=2.则这条抛物线的解析式为A. 22yxx B. 22yxxC. 22yxx或22yxx D. 22yxx或22yxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 9 页第 6 页 共 9 页二、填空题9二次函数23yxbx的对称轴是2x,则b_。10 已知抛物线y=-2 (x+3 )2 +5,如果 y 随 x 的增大而减小,那么x 的取值范围是 _. 11一个函数具有下列性质:图象过点(1,2) ,当x0 时,函数值y随自变量x的增大而增大;满足上述两条性质的函数的解析式是(只写一个即可)
17、。12抛物线22(2)6yx的顶点为C,已知直线3ykx过点 C ,则这条直线与两坐标轴所围成的三角形面积为。13. 二次函数2241yxx的图象是由22yxbxc的图象向左平移1个单位 , 再向下平移2个单位得到的 , 则 b= ,c= 。14如图,一桥拱呈抛物线状,桥的最大高度是16 米,跨度是40 米,在线段AB上离中心M处 5 米的地方,桥的高度是 (取 3.14). 三、解答题:15. 已知二次函数图象的对称轴是30 x, 图象经过 (1,-6),且与y轴的交点为 (0,52). (1) 求这个二次函数的解析式; (2) 当 x 为何值时 , 这个函数的函数值为0? (3) 当 x
18、在什么范围内变化时, 这个函数的函数值y随 x 的增大而增大 ? 16. 某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式2012hv tgt( 0t 2) ,其中重力加速度g 以 10 米/ 秒2计算这种爆竹点燃后以v0=20 米/ 秒的初速度上升,( 1)这种爆竹在地面上点燃后,经过多少时间离地15 米?( 2)在爆竹点燃后的1.5 秒至 1.8 秒这段时间内,判断爆竹是上升,或是下降,并说明理由. 第 15 题图精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 9 页第 7 页 共 9 页17. 如图,抛物线2yxbxc经
19、过直线3yx与坐标轴的两个交点 A、B,此抛物线与x轴的另一个交点为C,抛物线顶点为D. (1)求此抛物线的解析式;(2)点 P为抛物线上的一个动点,求使APCS:ACDS5 :4 的点 P的坐标。18. 红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理) 当每吨售价为260 元时,月销售量为45 吨该建材店为提高经营利润,准备采取降价的方式进行促销经市场调查发现:当每吨售价每下降10 元时,月销售量就会增加7. 5吨综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100 元设每吨材料售价为x(元) ,该经销店的月利
20、润为y(元) (1)当每吨售价是240 元时,计算此时的月销售量;(2)求出 y 与 x 的函数关系式(不要求写出x 的取值范围) ;(3)该建材店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大”你认为对吗?请说明理由精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 9 页第 8 页 共 9 页练习试题答案一,选择题、1A 2 C 3 A 4 B 5 D 6 B 7 C 8 C 二、填空题、 9 4b 10 x-3 11 如224,24yxyx等(答案不唯一)121 13-8 7 1415 三、解答
21、题15 (1) 设抛物线的解析式为2bxcyax, 由题意可得解得15,3,22abc所以215322yxx(2)1x或-5 (2)3x16 (1)由已知得,211520102tt,解得123,1tt当3t时不合题意,舍去。所以当爆竹点燃后 1 秒离地 15 米 (2)由题意得,2520htt25(2)20t,可知顶点的横坐标2t,又抛物线开口向下,所以在爆竹点燃后的1.5 秒至 108 秒这段时间内,爆竹在上升17 (1)直线3yx与坐标轴的交点A(3,0) ,B(0, 3) 则9303bcc解得23bc所以此抛物线解析式为223yxx ( 2)抛物线的顶点D(1, 4) ,与x轴的另一个交
22、点C(1,0). 设 P2( ,23)a aa,则211(423) :(44)5: 422aa. 化简得2235aa当223aa0 时,2235aa得4,2aaP(4,5)或 P( 2,5)当223aa0 时,2235aa即2220aa,此方程无解综上所述,满足条件的点的坐标为( 4, 5)或( 2,5) 32652baabcc精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 9 页第 9 页 共 9 页18 (1)5.71024026045=60(吨) (2)260(100)(457.5)10 xyx,化简得:23315240004yx
23、x ( 3)24000315432xxy23(210)90754x红星经销店要获得最大月利润,材料的售价应定为每吨210 元( 4)我认为,小静说的不对理由:方法一:当月利润最大时,x 为 210 元,而对于月销售额)5.71026045(xxW23(160)192004x来说,当 x 为 160 元时,月销售额W最大当x 为 210 元时,月销售额W不是最大小静说的不对方法二:当月利润最大时,x 为 210 元,此时,月销售额为17325 元; 而当 x 为 200 元时,月销售额为 18000 元 1732518000, 当月利润最大时,月销售额W不是最大小静说的不对精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 9 页