《2022年初三数学二次函数知识点总结x185 .pdf》由会员分享,可在线阅读,更多相关《2022年初三数学二次函数知识点总结x185 .pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档=初三数学二次函数知识点总结一、二次函数概念:1二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。2yaxbxcabc何何0a这里需要强调:和一元二次方程类似,二次项系数,而可以为零二次函数的定义域是全体实0abc何数2. 二次函数的结构特征:2yaxbxc 等号左边是函数,右边是关于自变量的二次式,的最高次数是2xx是常数,是二次项系数,是一次项系数,是常数项abc何何abc二、二次函数的基本形式1. 二次函数基本形式:的性质:2yaxa 的绝对值越大,抛物线的开口越小。2. 的2yaxc性质:上加下减。3.
2、的2ya xh性质:左加右减。4. 2ya xhk的性质:三、二次函数图象的平移1. 平移步骤:方法一: 将抛物线解析式转化成顶点式,确定其顶点坐标;2ya xhkhk何的符号a开口方向顶点坐标对称轴性质向上轴y时,随的增大而增大;时,0 xyx0 x随的增大而减小;时,有最小yx0 xy值0向下轴y时,随的增大而减小;时,0 xyx0 x随的增大而增大;时,有最大yx0 xy值0的符号a开口方向顶点坐标对称轴性质向上轴y时,随的增大而增大;时,0 xyx0 x随的增大而减小;时,有最小yx0 xy值c向下轴y时,随的增大而减小;时,0 xyx0 x随的增大而增大;时,有最大yx0 xy值c的
3、符号a开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,xhyxxh随的增大而减小;时,有最小yxxhy值0向下X=h时,随的增大而减小;时,xhyxxh随的增大而增大;时,有最大yxxhy值0的符号a开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,xhyxxh随的增大而减小;时,有最小yxxhy值k向下X=h时,随的增大而减小;时,xhyxxh随的增大而增大;时,有最大yxxhy值k精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档= 保
4、持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2yaxhk何2. 平移规律在原有函数的基础上“ 值正右移,负左移;值正上移,负下移” hk概括成八个字“左加右减,上加下减” 方法二:沿轴平移 :向上(下)平移个单位,变成cbxaxy2ymcbxaxy2(或)mcbxaxy2mcbxaxy2沿轴平移:向左(右)平移个单位,变成cbxaxy2mcbxaxy2(或)cmxbmxay)()(2cmxbmxay)()(2四、二次函数与的比较2ya xhk2yaxbxc从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,2ya xhk2yaxbxc即,其中22424bacbya xa
5、a2424bacbhkaa何五、二次函数图象的画法2yaxbxc五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称2yaxbxc2()ya xhk轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、与轴的交点y、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,0c何0c何2hc,x10 x 何20 x 何x则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点 .xy六、二次函数的性质2yaxbxc1. 当时,抛物线开口向上,对称轴为,顶点坐标为0a2bxa2424bacbaa何当时,随的增大而减小
6、;当时,随的增大而增大;当时,有最小值2bxayx2bxayx2bxay244acba2. 当时,抛物线开口向下,对称轴为,顶点坐标为当时,随的0a2bxa2424bacbaa何2bxayx增大而增大;当时,随的增大而减小;当时,有最大值2bxayx2bxay244acba七、二次函数解析式的表示方法1. 一般式:(,为常数,) ;2yaxbxcabc0a精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档=2. 顶点式:(,为常数,) ;2()ya xhkahk
7、0a3. 两根式:(,是抛物线与轴两交点的横坐标).12()()ya xxxx0a1x2xx注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种x240bac形式可以互化 .八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数中,作为二次项系数,显然2yaxbxca0a 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;0aaa 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大0aaa总结起来,决定了抛物线开口的大小和方向,的正负决
8、定开口方向,的大小决定开口的大小aaa2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴ab 在的前提下,0a当时,即抛物线的对称轴在轴左侧;0b02bay当时,即抛物线的对称轴就是轴;0b02bay当时,即抛物线对称轴在轴的右侧0b02bay 在的前提下,结论刚好与上述相反,即0a当时,即抛物线的对称轴在轴右侧;0b02bay当时,即抛物线的对称轴就是轴;0b02bay当时,即抛物线对称轴在轴的左侧0b02bay总结起来,在确定的前提下,决定了抛物线对称轴的位置ab的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左ababx2y0aby0ab同右异 ”总结:3. 常
9、数项 c 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0cyxy 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0cyy0 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负0cyxy总结起来,决定了抛物线与轴交点的位置cy总之,只要都确定,那么这条抛物线就是唯一确定的abc何何二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3
10、页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档=1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于轴对称x关于轴对称后,得到的解析式是;2yaxbxcx2yaxbxc关于轴对称后,得到的解析式是;2ya xhkx2ya xhk2. 关于轴对称y关于轴对称后,得到的解析式是;2yaxbxcy2yaxbxc关于
11、轴对称后,得到的解析式是;2ya xhky2ya xhk3. 关于原点对称关于原点对称后,得到的解析式是;2yaxbxc2yaxbxc关于原点对称后,得到的解析式是;2ya xhk2ya xhk4. 关于顶点对称(即:抛物线绕顶点旋转180)关于顶点对称后,得到的解析式是;2yaxbxc222byaxbxca关于顶点对称后,得到的解析式是2ya xhk2ya xhk5. 关于点对称mn何关于点对称后,得到的解析式是2ya xhkmn何222ya xhmnk根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物a线的对称抛物线的表达式时,可以依据题意或方便运算的
12、原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):x一元二次方程是二次函数当函数值时的特殊情况 .20axbxc2yaxbxc0y图象与轴的交点个数:x精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档= 当时,图象与轴交于两点,其中的是一元二次方程240bacx12
13、00A xB x,12()xx12xx,的两根这两点间的距离. 200axbxca2214bacABxxa 当时,图象与轴只有一个交点;0 x 当时,图象与轴没有交点 .0 x当时,图象落在轴的上方,无论为任何实数,都有;10axx0y当时,图象落在轴的下方,无论为任何实数,都有20axx0y2. 抛物线的图象与轴一定相交,交点坐标为,;2yaxbxcy(0)c3. 二次函数常用解题方法总结: 求二次函数的图象与轴的交点坐标,需转化为一元二次方程;x 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;根据图象的位置判断二次函数中,的符号,或由二次函数中,的符号判断2yaxb
14、xcabcabc图象的位置,要数形结合;二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交x点坐标,可由对称性求出另一个交点坐标.与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面2(0)axbxc ax以时0a为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用何何何何何何何何何何何何何何何何何何何二次函数考查重点与常见题型1 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以为自变量的二次函数的图像经过原点,则的值是x2)2(22mmxmym抛物线与轴有x两个交
15、点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根抛物线与轴只x有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根抛物线与轴无x交点二次三项式的值恒为正一元二次方程无实数根.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档=2 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是()bkxy12bxkxy y
16、y y y 1 1 0 x o-1 x 0 x 0 -1 x A B C D3 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3) ,(4,6)两点,对称轴为,求这条抛物线的解析式。35x4 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线(a0)与x 轴的两个交点的横坐标是1、3,与 y 轴交点的纵坐标是2yaxbxc32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标. 5考查代数与几何的综合能力,常见的作为专项压轴题。【例题经典】由抛物线的
17、位置确定系数的符号例 1 (1)二次函数的图像如图1,则点在()2yaxbxc),(acbM A第一象限 B第二象限 C 第三象限 D 第四象限( 2)已知二次函数y=ax2+bx+c(a0)的图象如图2b 同号;当x=1 和 x=3时,函数值相等; 4a+b=0;当y=-2 时, x 的值只能取0. 其中正确的个数是()A1 个 B2 个 C3 个 D4 个 (1) (2)【点评】弄清抛物线的位置与系数a, b,c 之间的关系,是解决问题的关键例 2.已知二次函数y=ax2+bx+c 的图象与x 轴交于点 (-2 ,O)、(x1,0) ,且 1x12,与 y 轴的正半轴的交点在点(O, 2)
18、的下方下列结论: abO ;4a+cO ,其中正确结论的个数为( ) A 1个 B. 2个 C. 3个 D 4 个答案: D会用待定系数法求二次函数解析式例 3.已知:关于x 的一元二次方程ax2+bx+c=3 的一个根为x=-2 ,且二次函数y=ax2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( ) A(2,-3) B.(2,1) C(2,3) D(3 , 2)答案: C例 4、如图(单位:m ) ,等腰三角形ABC以 2 米/ 秒的速度沿直线L 向正方形移动,直到AB与 CD重合设 x 秒时,三角形与正方形重叠部分的面积为ym2(1)写出 y 与 x 的关系式;(2)当 x=2
19、,3.5 时, y 分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴 .精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档=例 5、已知抛物线y=x2+x-1252(1)用配方法求它的顶点坐标和对称轴(2)若该抛物线与x 轴的两个交点为A、B,求线段 AB的长【点评】本题(1)是对二次函数的“基本方法 ”的考查,第( 2)问主要考查二次函数与一元二次方程的关系例 6、 “已知函数的图象经过点A(c, 2) ,
20、cbxxy221求证:这个二次函数图象的对称轴是x=3。 ”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。( 1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。( 2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。点评:对于第( 1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3” 当作已知来用,再结合条件“图象经过点A(c, 2) ” ,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2
21、)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。 解答 (1)根据的图象经过点A(c, 2) ,图象的对称轴是x=3,得cbxxy221, 3212, 2212bcbcc解得.2, 3cb所以所求二次函数解析式为图象如图所示。.23212xxy( 2)在解析式中令y=0,得,解得023212xx.53,5321xx所以可以填 “抛物线与 x 轴的一个交点的坐标是(3+”或“ 抛物线与 x 轴的一个交点的坐标是)0,5).0,53(令 x
22、=3 代入解析式,得,25y所以抛物线的顶点坐标为23212xxy),25, 3(所以也可以填抛物线的顶点坐标为等等。)25,3(函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为 “变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。用二次函数解决最值问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档=例 1 已知边长为4 的正方形截去一个角后成为五边形ABCDE (如图),其中
23、 AF=2,BF=1试在 AB上求一点P,使矩形 PNDM 有最大面积【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力同时,也给学生探索解题思路留下了思维空间例 2 某产品每件成本10 元,试销阶段每件产品的销售价xy(件)之间的关系如下表:x(元)152030y(件)252010若日销售量y 是销售价x 的一次函数( 1)求出日销售量y(件)与销售价x(元)的函数关系式;( 2【解析】( 1)设此一次函数表达式为y=kx+b则解得 k=-1 ,b=401525,220kbkby=-x+40 ( 2)设每件产品的销售价应定为x 元,所
24、获销售利润为w元 w=( x-10 ) ( 40-x )=-x2+50 x-400=- (x-25 )2+225产品的销售价应定为25 元,此时每日获得最大销售利润为225 元【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”要设为自变量, “什么 ”要设为函数;(2的求解依靠配方法或最值公式,而不是解方程二次函数对应练习试题一、选择题1. 二次函数的顶点坐标是( )247yxxA.(2, 11) B.( 2,7) C.(2,11) D. (2, 3)2. 把抛物线向上平移1 个单位,得到的抛物线是()22yxA
25、. B. C. D. 22(1)yx22(1)yx221yx221yx3. 函数和在同一直角坐标系中图象可能是图中的( )2ykxk(0)kykx4. 已知二次函数2(yaxbxc a的图象如图所示,则下列结论 : a,b同号; 当和时, 函数值相等 ; 当时, 的值只能取0. 其中正确的个数是( ) 1x3x40ab2yx A.1 个 B.2个 C. 3个 D. 4个5. 已知二次函数的顶点坐标( -1 ,-3.2 )及部分图象(如图 ), 由2(0)yaxbxc a图象可知关于的一元二次方程的两个根分别是(x20axbxc121.3xx和)精选学习资料 - - - - - - - - -
26、名师归纳总结 - - - - - - -第 8 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档= . B.-2.3 C.-0.3 D.-3.36. 已知二次函数的图象如图所示,则点在()2yaxbxc(,)ac bcA第一象限B第二象限C第三象限 D 第四象限7. 方程的正根的个数为()222xxxA.0 个 B.1个 C.2个. 3 个8. 已知抛物线过点A(2,0),B(-1,0),与轴交于点 C,且 OC=2.则这条抛物线的解析式为yA. B. 22yxx22yxxC. 或 D. 或22yxx22yxx22yxx22yxx二、填空题9二次函数的对称
27、轴是,则_。23yxbx2xb10已知抛物线y=-2 (x+3 )2+5,如果 y 随 x 的增大而减小,那么x 的取值范围是_.11一个函数具有下列性质:图象过点(1,2) ,当0 时,函数值随自变量的增大而增大;满足xyx上述两条性质的函数的解析式是(只写一个即可) 。12抛物线的顶点为 C,已知直线过点 C ,则这条直线与两坐标轴所围成的三角形22(2)6yx3ykx面积为。13. 二次函数的图象是由的图象向左平移1 个单位 , 再向下平移2 个单位得到2241yxx22yxbxc的, 则 b= ,c= 。14如图,一桥拱呈抛物线状,桥的最大高度是16 米,跨度是40 米,在线段AB上离
28、中心M处 5 米的地方,桥的高度是( 取 3.14).三、解答题:15. 已知二次函数图象的对称轴是, 图象经过 (1,-6),且与轴的交点为 (0,).30 xy52(1) 求这个二次函数的解析式;(2) 当 x 为何值时 , 这个函数的函数值为0?(3) 当 x 在什么范围内变化时, 这个函数的函数值随 x 的增大而增大?y16. 某种爆竹点燃后,其上升高度h(米)和时间t (秒)符合关系式(0t2) ,其中重力加速2012hv tgt度 g 以 10 米/ 秒2计算这种爆竹点燃后以v0=20 米/ 秒的初速度上升,( 1)这种爆竹在地面上点燃后,经过多少时间离地15 米?( 2)在爆竹点
29、燃后的1.5 秒至 1.8 秒这段时间内,判断爆竹是上升,或是下降,并说明理由. 第 15题图精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档=17. 如图,抛物线经过直线与坐标轴的两个交2yxbxc3yx点A、B,此抛物线与轴的另一个交点为C,抛物线顶点为D.x(1)求此抛物线的解析式;(2)点 P为抛物线上的一个动点,求使:5 :4 的点 P的坐APCSACDS标。18. 红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再
30、进行结算,未售出的由厂家负责处理) 当每吨售价为 260 元时,月销售量为45 吨该建材店为提高经营利润,准备采取降价的方式进行促销经市场调查发现:当每吨售价每下降10 元时,月销售量就会增加7. 5吨综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100 元设每吨材料售价为x(元),该经销店的月利润为y(元) (1)当每吨售价是240 元时,计算此时的月销售量;(2)求出 y 与 x 的函数关系式(不要求写出x 的取值范围) ;(3)该建材店要获得最大月利润,售价应定为每吨多少元?(4)小静说: “当月利润最大时,月销售额也最大”你认为对吗?请说明理由一,选择题、1A 2 C 3
31、A 4 B 5 D 6 B 7 C 8 C 二、填空题、 9 10 -3 11如等(答案不唯一)4bx224,24yxyx121 13-8 7 1415三、解答题15(1) 设抛物线的解析式为, 由题意可得2bxcyax解得所以15,3,22abc215322yxx(2)或-5 (2)16 (1)由已知得,解得当时不合题意,1x3x211520102tt123,1tt3t舍去。所以当爆竹点燃后1 秒离地 15 米 (2)由题意得,可知顶点的横坐2520htt25(2)20t标,又抛物线开口向下,所以在爆竹点燃后的1.5 秒至 108 秒这段时间内,爆竹在上升2t17 (1)直线与坐标轴的交点A
32、(3,0) ,B(0, 3) 则解得3yx9303bcc23bc所以此抛物线解析式为 (2)抛物线的顶点D(1, 4) ,与轴的另一个交点223yxxxC( 1,0). 设 P,则. 化简得2( ,23)a aa211(423) : (44)5:422aa2235aa精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 11 页个人收集了温度哦精品文档供大家学习=专业收集精品文档=专业收集精品文档=当0 时,得P( 4,5)或 P( 2,5)223aa2235aa4,2aa当0 时,即,此方程无解综上所述,满足条件的点的坐标223aa223
33、5aa2220aa为( 4,5)或( 2,5) 18 (1)=60(吨) ( 2),化简得:5.71024026045260(100)(457.5)10 xyx ( 3)23315240004yxx24000315432xxy23(210)90754x红星经销店要获得最大月利润,材料的售价应定为每吨210 元( 4)我认为,小静说的不对理由:方法一:当月利润最大时,x 为 210元,而对于月销售额来说,)5.71026045(xxW23(160)192004x当 x 为 160 元时,月销售额W最大当x 为 210 元时,月销售额W不是最大小静说的不对方法二:当月利润最大时,x 为 210 元,此时,月销售额为17325 元;而当 x 为 200 元时,月销售额为18000 元 17325 18000, 当月利润最大时,月销售额W 不是最大小静说的不对精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 11 页