2022年二次函数应用题2 .pdf

上传人:Che****ry 文档编号:32879859 上传时间:2022-08-09 格式:PDF 页数:5 大小:107.89KB
返回 下载 相关 举报
2022年二次函数应用题2 .pdf_第1页
第1页 / 共5页
2022年二次函数应用题2 .pdf_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《2022年二次函数应用题2 .pdf》由会员分享,可在线阅读,更多相关《2022年二次函数应用题2 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品资料欢迎下载二次函数应用题1. 某网店以每件60 元的价格购进一批商品,若以单价80 元销售,每月可售出300 件,调查表明:单价每上涨1 元,该商品每月的销量就减少10 件。(1)请写出每月销售该商品的利润 y(元)与单价上涨x(元)件的函数关系式;(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?2、某体育用品商店购进一批滑板,每件进价为100 元,售价为130 元,每星期可卖出80件. 商家决定降价促销,根据市场调查,每降价5 元,每星期可多卖出20 件. (1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大

2、销售利润是多少?3、某商场将进价为2000 元的冰箱以2400 元售出, 平均每天能售出8 台,为了配合国家 “家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4 台(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与 x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?精选学习资料 - - - - - - - - - 名师归纳总结 - -

3、- - - - -第 1 页,共 5 页精品资料欢迎下载4、张大爷要围成一个矩形花圃花圃的一边利用足够长的墙另三边用总长为32 米的篱笆恰好围成围成的花圃是如图所示的矩形ABCD 设 AB 边的长为x 米矩形ABCD 的面积为 S 平方米( 1)求 S与 x 之间的函数关系式(不要求写出自变量x 的取值范围)( 2)当 x 为何值时, S 有最大值?并求出最大值(参考公式:二次函数2yaxbxc(0a),当2bxa时,244acbya最大 (小 )值) 5、某商场试销一种成本为每件60 元的服装, 规定试销期间销售单价不低于成本单价,且获利不得高于45%, 经试销发现, 销售量y(件)与销售单

4、价x(元)符合一次函数ykxb,且65x时,55y;75x时,45y(1)求一次函数ykxb的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500 元,试确定销售单价x的范围精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 5 页精品资料欢迎下载6、某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20 元,并且每周(7 天)涨价 2 元,从第 6 周开始,保持每件30 元的稳定价格销售

5、,直到11 周结束,该童装不再销售。(1)请建立销售价格y(元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x 之间的关系为12) 8(812xz, 1 x 11,且 x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?) 7、茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:出厂价成本价排污处理费甲种塑料2100(元 /吨)800(元 /吨)200(元 /吨)乙种塑料2400(元 /吨)1100(元 /吨)100(元 /吨)每月还需支付设备管理、维护费20000 元(1)设该车间每月生产甲、乙两

6、种塑料各x吨,利润分别为1y元和2y元,分别求1y和2y与x的函数关系式(注:利润=总收入 -总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400 吨,若某月要生产甲、乙两种塑料共 700 吨,求该月生产甲、 乙塑料各多少吨,获得的总利润最大?最大利润是多少?价目品种精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 5 页精品资料欢迎下载二次函数应用题答案1、解:( 1)y=( 8060+x)( 30010 x),=10 x2+100 x+6000 ;(2)y= 10 x2+100 x+6000 , =10( x5)2+6250

7、, a= 100, 当 x=5 时, y 有最大值,其最大值为6250, 即单价定为85 元时,每月销售该商品的利润最大,最大利润为 6250 元。2、解: (1) (130-100 ) 80=2400(元)(2)设应将售价定为x元,则销售利润130(100)(8020)5xyx24100060000 xx24(125)2500 x. 当125x时,y有最大值2500. 应将售价定为125 元, 最大销售利润是2500 元 . 3、解:( 1)(24002000) 8450 xyx,即2224320025yxx(2)由题意,得22243200480025xx整理,得2300200000 xx得

8、12100200 xx,要使百姓得到实惠,取200 x所以,每台冰箱应降价200元(3)对于2224320025yxx,当241502225x时,150(24002000150) 8425020500050y最大值所以,每台冰箱的售价降价150 元时,商场的利润最大,最大利润是5000 元4、5、解:( 1)根据题意得65557545.kbkb,解得1120kb,所求一次函数的表达式为120yx(2)(60) (120)Wxx21807200 xx2(90)900 x,抛物线的开口向下,当90 x时,W随x的增大而增大,而6087x,精选学习资料 - - - - - - - - - 名师归纳总

9、结 - - - - - - -第 4 页,共 5 页精品资料欢迎下载当87x时,2(8790)900891W当销售单价定为87 元时,商场可获得最大利润,最大利润是891 元(3)由500W,得25001807200 xx,整理得,218077000 xx,解得,1270110 xx,由图象可知,要使该商场获得利润不低于500 元,销售单价应在70 元到 110 元之间,而6087x,所以,销售单价x的范围是7087x6、 解:( 1)202(1)218(16)().(2)30 (611)().(4)xxxxyxx为整数分为整数分(2)设利润为w222211202(1)(8)1214(16)(

10、).881130(8)12(8)18(611)().88yzxxxxxwyzxxxx为整数(6分)为整数(8分)21114 5 1788wxxw最大当时,(元) .(9分)2111(8)18 11 918 19888wxxw最大当时,(元) .(10分)综上知:在第11 周进货并售出后,所获利润最大且为每件1198元(10 分7解:(1)依题意得:1(2100800200)1100yxx,2( 2 4 0 01 1 0 01 0 0 )2 0 0 0 01 2 0 02 0 0 0 0yxx,(2)设该月生产甲种塑料x吨,则乙种塑料(700)x吨,总利润为W元,依题意得:1 1 0 01 2 0 0 ( 7 0 0)2 0 0 0 01 0 0Wxxx400700400 xx,解得:300400 x1000, W 随着 x 的增大而减小,当300 x时, W最大=790000(元)此时,700400 x(吨)因此,生产甲、乙塑料分别为300 吨和 400 吨时总利润最大,最大利润为790000 元精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 5 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁