2022年线性代数期末试题及参考答案.doc

上传人:可****阿 文档编号:32660426 上传时间:2022-08-09 格式:DOC 页数:16 大小:428KB
返回 下载 相关 举报
2022年线性代数期末试题及参考答案.doc_第1页
第1页 / 共16页
2022年线性代数期末试题及参考答案.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2022年线性代数期末试题及参考答案.doc》由会员分享,可在线阅读,更多相关《2022年线性代数期末试题及参考答案.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、线性代数期末试题及参考答案一、判断题(正确填T,错误填F。每小题2分,共10分) 1 A是n阶方阵,则有。 ( )2 A,B是同阶方阵,且,则。 ( )3如果与等价,则的行向量组与的行向量组等价。 ( )4若均为阶方阵,则当时,一定不相似。 ( )5n维向量组线性相关,则也线性相关。 ( )二、单项选择题(每小题3分,共15分)1下列矩阵中,( )不是初等矩阵。(A) (B) (C) (D) 2设向量组线性无关,则下列向量组中线性无关的是( )。(A) (B) (C) (D)3设A为n阶方阵,且。则() (A) (B) (C) (D) 4设为矩阵,则有( )。(A)若,则有无穷多解;(B)若,

2、则有非零解,且基础解系含有个线性无关解向量;(C)若有阶子式不为零,则有唯一解;(D)若有阶子式不为零,则仅有零解。5若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( ) (A)A与B相似 (B),但|A-B|=0 (C)A=B (D)A与B不一定相似,但|A|=|B| 三、填空题(每小题4分,共20分)1 。2为3阶矩阵,且满足3,则=_, 。3向量组,是线性 (填相关或无关)的,它的一个极大线性无关组是 。4 已知是四元方程组的三个解,其中的秩=3,则方程组的通解为 。5设,且秩(A)=2,则a= 。四、计算下列各题(每小题9分,共45分)。1已知A+B=AB,且,求矩阵

3、B。2.设,而,求。3.已知方程组有无穷多解,求a以及方程组的通解。4.求一个正交变换将二次型化成标准型5 A,B为4阶方阵,AB+2B=0,矩阵B的秩为2且|E+A|=|2E-A|=0。(1)求矩阵A的特征值;(2)A是否可相似对角化?为什么?;(3)求|A+3E|。五证明题(每题5分,共10分)。1若是对称矩阵,是反对称矩阵,是否为对称矩阵?证明你的结论。2设为矩阵,且的秩为n,判断是否为正定阵?证明你的结论。线性代数试题解答一、1(F)()2(T) 3(F)。如反例:,。4(T)(相似矩阵行列式值相同)5(F)二、1选B。初等矩阵一定是可逆的。2选B。A中的三个向量之和为零,显然A线性相

4、关; B中的向量组与,等价, 其秩为3,B向量组线性无关;C、D中第三个向量为前两个向量的线性组合,C、D中的向量组线性相关。3选C 。由,)。4选D。A错误,因为,不能保证;B错误,的基础解系含有个解向量;C错误,因为有可能,无解;D正确,因为。5选A。A正确,因为它们可对角化,存在可逆矩阵,使得,因此都相似于同一个对角矩阵。三、1 (按第一列展开)2 ;(=)3 相关(因为向量个数大于向量维数)。 。因为,。4 。因为,原方程组的导出组的基础解系中只含有一个解向量,取为,由原方程组的通解可表为导出组的通解与其一个特解之和即得。5(四、1解法一:。将与组成一个矩阵,用初等行变换求。=。故 。

5、解法二:。,因此。2解:,。3解法一:由方程组有无穷多解,得,因此其系数行列式。即或。当时,该方程组的增广矩阵于是,方程组有无穷多解。分别求出其导出组的一个基础解系,原方程组的一个特解,故时,方程组有无穷多解,其通解为,当时增广矩阵,此时方程组无解。解法二:首先利用初等行变换将其增广矩阵化为阶梯形。由于该方程组有无穷多解,得。因此,即。求通解的方法与解法一相同。4解:首先写出二次型的矩阵并求其特征值。二次型的矩阵,因此得到其特征值为,。再求特征值的特征向量。解方程组,得对应于特征值为的两个线性无关的特征向量,。解方程组得对应于特征值为的一个特征向量。再将,正交化为,。最后将,单位化后组成的矩阵

6、即为所求的正交变换矩阵,其标准形为。5 解:(1)由知-1,2为的特征值。,故-2为的特征值,又的秩为2,即特征值-2有两个线性无关的特征向量,故的特征值为-1,2,-2,-2。(2)能相似对角化。因为对应于特征值-1,2各有一个特征向量,对应于特征值-2有两个线性无关的特征向量,所以有四个线性无关的特征向量,故可相似对角化。(3)的特征值为2,5,1,1。故=10。五、1为对称矩阵。 证明: =,所以为对称矩阵。2为正定矩阵。证明:由知为对称矩阵。对任意的维向量,由得, =,由定义知是正定矩阵。姓名 学号 学院 专业 座位号 ( 密 封 线 内 不 答 题 )密封线线_ _ 诚信应考,考试作

7、弊将带来严重后果! 华南理工大学期末考试(A卷) 线性代数 试卷注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请直接答在试卷上(或答题纸上); 3考试形式:闭卷; 4. 本试卷共 六 大题,满分100分,考试时间120分钟。题 号一二三四五六总分得 分评卷人一、 填空题(共20分)1 设A是矩阵, 是 维列向量,则方程组无解的充分必要条件是:2 已知可逆矩阵P使得,则3 若向量组=(0,4,t),=(2,3,1),=(t,2,3)的秩为2,则t=4 若A为2n阶正交矩阵,为A的伴随矩阵, 则=5 设A为n阶方阵,是的个特征根,则 = 二、 选择题(共20分)1 将矩阵的第i

8、列乘C加到第j列相当于对A:A, 左乘一个m阶初等矩阵, B,右乘一个m阶初等矩阵 C, 左乘一个n阶初等矩阵, D,右乘一个n阶初等矩阵 2 若A为mn 矩阵, 是 维 非零列向量,。集合则A, 是维向量空间, B, 是n-r维向量空间C,是m-r维向量空间, D, A,B,C都不对3 若n阶方阵A,B满足, ,则以下命题哪一个成立A, , B, C, , D, 4 若A是n阶正交矩阵,则以下命题那一个成立:A,矩阵为正交矩阵, B,矩阵 -为正交矩阵C,矩阵为正交矩阵, D,矩阵 -为正交矩阵5 4n阶行列式的值为:A, 1, B,-1C, n D,-n 三、 解下列各题(共30分)1求向

9、量,在基下的坐标。2设,求矩阵-A3计算行列式4.计算矩阵列向量组生成的空间的一个基。5. 设 计算det A四、 证明题(10分)设是齐次线性方程组的一个基础解系, 不是线性方程组的一个解,求证线性无关。五、(8分)用正交变换化下列二次型为标准型,并写出正交变换矩阵 六、(8分) 取何值时,方程组 有无数多个解?并求通解七、(4分)设矩阵,+都是可逆矩阵,证明矩阵也是可逆矩阵。2007年线性代数参考答案一 填空题 每个四分(1) rankArank(A|B) 或者 rankA rank(A|B)(2)(3) t= (4) (5) 0二 选择题(1) D (2) D (3) C (4) 都对 (5) A三 解答题 (1) 设向量在基下的坐标为,则 (4分) (6分) (2) (2分) (6分)(3) (6分)(4)(4分) (6分) (5) (6分)四 证明: 五、A=, (2分) | |= (5分)P= (7分)+ (8分) 六,证明 七

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁