《难点解析京改版八年级数学下册第十五章四边形章节训练试题(含详解).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十五章四边形章节训练试题(含详解).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是()ABCD2、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE
2、交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D93、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD4、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14405、下列图案中既是轴对称图形又是中心对称图形的是( )ABCD6、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )AA,B,C都不在B只有BC只有A,CDA,B,C7、下列图案中,是中心对称图形的是( )ABCD8、下列图中,既是轴对称图形又是中心对称图形的是()
3、ABCD9、垦区小城镇建设如火如荼,小红家买了新楼爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )A1种B2种C3种D4种10、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每个外角都等于45,那么这个正多边形的内角和为_度2、若正边形的每个内角都等于120,则这个正边形的边数为_3、如图,正方形ABCD中,AD
4、,已知点E是边AB上的一动点(不与A、B重合)将ADE沿DE对折,点A的对应点为P,当APB是等腰三角形时,AE_ (温馨提示: , )4、若点P(m,2)与Q(4,2)关于原点对称,则m_5、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,延长CB,并将射线CB绕点C逆时针旋转90得到射线l,D为射线l上一动点
5、,点E在线段CB的延长线上,且,连接DE,过点A作于M(1)依题意补全图1,并用等式表示线段DM与ME之间的数量关系,并证明;(2)取BE的中点N,连接AN,添加一个条件:CD的长为_,使得成立,并证明2、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若MBN45,则MN,AM,CN的数量关系为 (2)如图2,在四边形ABCD中,BCAD,ABBC,A+C180,点M、N分别在AD、CD上,若MBNABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明(3)如图3,在四边形ABCD中,ABBC,ABC+ADC180,点M、N分别在DA、CD的延长线
6、上,若MBNABC,试探究线段MN、AM、CN的数量关系为 3、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长4、如图,在中,过点作于点,点在边上,连接,(1)求证:四边形是矩形;(2)若,求证:平分5、(1)先化简,再求值:(a+b)(ab)a(a2b),其中a1,b2;(2)如图,菱形ABCD中,ABAC,E、F分别是BC、AD的中点,连接AE、CF证明:四边形AECF是矩形-参考答案-一、单选题1、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
7、【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.2、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的
8、中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键3、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻
9、找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合4、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.5、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对
10、称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形6、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得【详解】解:如图所示:连接BD,为直角三角形,D为AC中点,覆盖半径为300 ,A、B、C三个点都被覆盖,故选:D【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综
11、合运用两个定理是解题关键7、B【分析】由题意依据一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合8、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,也不是中心对称图形故本选项不合题意;B、是轴对称图形,不是中心对称图形故本选项不合题意;C、不是轴对称图形,是中心对称图形故本选项不合题意;D、既是轴对称图形又是中心对称图形故本选
12、项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合9、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360,并以此为依据进行求解【详解】解:正三角形每个内角是60,能被360整除,所以能单独镶嵌成一个平面;正方形每个内角是90,能被360整除,所以能单独镶嵌成一个平面;正五边形每个内角是108,不能被360整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120,能被360整除,所以能单独镶嵌成一个平面故只购买一种瓷砖进行平铺,有3种方式故选:
13、C【点睛】本题主要考查了平面镶嵌解这类题,根据组成平面镶嵌的条件,逐个排除求解10、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=M
14、B,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键二、填空题1、1080【分析】利用多边形的外角和为360计算出这个正多边形的边数,然后再根据内角和公式进行求解即可【详解】解:正多边形的每一个外角都等于,正多边形的边数为36045=8,所有这个正多边形的内角和为(8-2)180=1080故答案
15、为:1080【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n2)180 (n3)和多边形的外角和等于360是解题关键2、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解【详解】解:设所求正边形边数为,则,解得,故答案是:6【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理3、2【分析】当AP=AB时,结合正方形的性质可得AB=AD=AP,由折叠的性质可得AD=DP,推出APD为等边三角形,得到ADE=30,然后根据勾股定理进行计算;当AP=PB时,过P作PFAB于点F,过
16、P作PGAD于点G,则四边形AFPG为矩形,得到PG=AF,由等腰三角形的性质可得AF=AB,结合正方形以及折叠的性质可得PG=AF=PD,则GDP=30,进而求得PEF=30,设PF=x,则PE=AE=2x,EF=x,然后根据AE+EF=AF=PD进行计算【详解】解:当AP=AB时, 四边形ABCD为正方形, AB=AD, AP=AD 将ADE沿DE对折, 得到PDE, AD=DP, AP=AD=DP, APD为等边三角形, ADP=60, ADE=30, ,设,则,在中,即, 解得:; 当AP=PB时,过P作PFAB于点F,过P作PGAD于点G, ADAB, 四边形AFPG为矩形, PG=
17、AF AP=PB,PFAB, AF=AB= AB=AD=DP, PG=AF=PD=,如图,作DP的中点M,连接GM,又是等边三角形GDP=30 DAE=DPE=90,ADP=30, AEP=150, PEF=30 设PF=x,则PE=AE=2x,EF=x, AE+EF=(2+)x= , x=2-3, AE=4-6 故答案为:2或4-6【点睛】此题考查了正方形的性质,勾股定理,等腰三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,勾股定理,等腰三角形的性质和判定方法4、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P1(-x,-y)【详解】解:
18、因为点P(m,2)与Q(4,2)关于原点对称,所以m-4=0,即m=4,故答案为:4【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键5、【分析】根据DAC60,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得DOADEF60,再利用角的等量代换,即可得出结论正确;连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;延长OE至,使OD,连接,通过DAFDOE,DOE60,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论正确;【详解】解:设与的交点为如图所示:DAC60
19、,ODOA,OAD为等边三角形,DOADAOADO =60,DFE为等边三角形,DEF60,DOADEF60,故结论正确;如图,连接OE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60,COD180AOD120,COECODDOE1206060,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确;ODEADF,ADFOCE,即ADFECF,故结论正确;如图,延长OE至,使OD,连接,DAFDOE,DOE60,点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,设,则在中,即解得:ODAD,点E运动的路程是,故结论正确;故答案为:【
20、点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键三、解答题1、(1)DM=ME,见解析;(2),见解析【分析】(1)补全图形,连接AE、AD,通过ABE=ACD,AB=AC,BE=CD,证明 ABE ACD,得AE=AD,再利用AMDE于M,即可得到DM=EM(2)连接AD,AE,BM ,可求出,当时,可得,由(1)得DM=EM,可知BM是CDE的中位线从而得到,BMCD,得到ABM=135=ABE因为N为BE中点,可知从而证明ABN ABM得
21、到AN=AM,由(1),ABE ACD,可证明EAB=DAC,AD=AE进而得到EAD=90,又因为DM=EM,即可得到【详解】(1)补全图形如下图,DM与ME之间的数量关系为DM=ME 证明:连接AE,AD, BAC=90,AB=AC, ABC=ACB=45 ABE=180-ABC=135 由旋转,BCD=90, ACD=ACB+BCD=135 ABE=ACD AB=AC,BE=CD, ABE ACD AE=AD AMDE于M, DM=EM (2) 证明:连接AD,AE,BM AB=AC=1,BAC=90, , 由(1)得DM=EM, BM是CDE的中位线 ,BMCD EBM=ECD=90
22、ABE=135, ABM=135=ABE N为BE中点, BM=BN AB=AB, ABN ABM AN=AM 由(1),ABE ACD, EAB=DAC,AD=AE BAC=DAC+DAB=90, EAD=90 DM=EM, 【点睛】本题考查了旋转的性质和三角形全等的判定及性质,熟练掌握三角形全等的判定及性质是解题的关键2、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,可得到点M、C、N三点共线,再由MBN=45,可得MBN=MBN
23、,从而证得NBMNBM,即可求解;(2)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,由A+C180,可得点M、C、N三点共线,再由MBNABC,可得到MBN=MBN,从而证得NBMNBM,即可求解;(3)在NC上截取C M=AM,连接B M,由ABC+ADC180,可得BAM=C,再由ABBC,可证得ABMCB M,从而得到AM=C M,BM=B M,ABM=CB M,进而得到MA M=ABC,再由MBNABC,可得MBNMBN,从而得到NBMNBM,即可求解【详解】解:(1)如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=C
24、M,BM=BM,A=BCM,ABM=MBC,在正方形ABCD中,A=BCD=ABC=90,AB=BC ,BCM+BCD=180,点M、C、N三点共线,MBN=45,ABM+CBN=45,MBN=MBC+CBN=ABM+CBN=45,即MBN=MBN,BN=BN,NBMNBM,MN= MN,MN= MC+CN,MN= MC+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM,BM=BM,A=BCM,ABM=MBC,A+C180,BCM+BCD=180,点M、C、N三点共线,MBNABC,ABM+CBN=ABCMBN,CBN+MBC
25、 =MBN,即MBN=MBN,BN=BN,NBMNBM,MN= MN,MN= MC+CN,MN= MC+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M=AM,连接B M,在四边形ABCD中,ABC+ADC180,C+BAD=180,BAM+BAD=180,BAM=C,ABBC,ABMCB M,AM=C M,BM=B M,ABM=CB M,MA M=ABC,MBNABC,MBNMA M=MBN,BN=BN,NBMNBM,MN= MN,MN=CN-C M, MN=CN-AM故答案是:MN=CN-AM【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转
26、,根据题意做适当辅助线,得到全等三角形是解题的关键3、(1)见解析;(2)2【分析】(1)利用ASA定理证明AEBAED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答【详解】解:(1)证明:AE平分,BAE=DAE,AEB=AED=90,在AEB和AED中,AEBAED(ASA)BE=ED,AD=AB,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,AE平分,BAE=DAE,AEB=AED=90,在AEB和AEH中,AEBAEH(ASA)BE=E
27、H,AH=AB=9,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CH=(AH-AC)=2【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键4、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,即 ,四边形是平行四边形,四边形是矩形;(2)四边形是平行四边形, 四边形是矩形; 在中,由勾股定理,得,即平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,
28、证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.5、(1),0;(2)证明见解析【分析】(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;(2)首先根据菱形的性质得到,然后根据E、F分别是BC、AD的中点,得出,根据一组对边平行且相等证明出四边形AECF是平行四边形,然后根据等腰三角形三线合一的性质得出,即可证明出四边形AECF是矩形【详解】(1)(a+b)(ab)a(a2b)将a1,b2代入得:原式;(2)如图所示,四边形ABCD是菱形,且,又E、F分别是BC、AD的中点,四边形AECF是平行四边形,ABAC,E是BC的中点,即,平行四边形AECF是矩形【点睛】此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理