精品解析2022年人教版九年级数学下册第二十九章-投影与视图专题训练试题(含答案解析).docx

上传人:可****阿 文档编号:32653429 上传时间:2022-08-09 格式:DOCX 页数:20 大小:363.54KB
返回 下载 相关 举报
精品解析2022年人教版九年级数学下册第二十九章-投影与视图专题训练试题(含答案解析).docx_第1页
第1页 / 共20页
精品解析2022年人教版九年级数学下册第二十九章-投影与视图专题训练试题(含答案解析).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《精品解析2022年人教版九年级数学下册第二十九章-投影与视图专题训练试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十九章-投影与视图专题训练试题(含答案解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十九章-投影与视图专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面左侧几何体的主视图是( )ABCD2、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,

2、此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH若量得米,米,则立柱CD的高为( )A2.5mB2.7mC3mD3.6m3、下面的三视图所对应的几何体是()ABC D4、如图是由6个大小相同的小正方体组成的几何体,它的左视图是()ABCD5、下列立体图形中,从上面看到的形状图是三角形的是( )ABCD6、如图是一根空心方管,它的主视图是()ABCD7、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A四棱柱B四棱锥C圆柱D圆锥8、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A俯视图不变,左视图不

3、变B主视图改变,左视图改变C俯视图改变,主视图改变D主视图不变,左视图改变9、如图所示的几何体从上面看到的形状图是( )ABCD10、下列几何体中,从正面看和从左面看形状均为三角形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为_2、一块直角三角形板,测得边的中心投影长为,则长为_3、如图是某物体的三视图,则此物体的体积为_(结果保留)4、如图,在白炽灯下方有一个乒乓球,当乒乓球越接近灯泡时,它在地面上影子的变化情况为_(填“越小”或“越大”,“不变”)5、如图,用小木块搭一个几何体,它

4、的主视图和俯视图如图所示问:最少需要_个小正方体木块,最多需要_个小正方体木块三、解答题(5小题,每小题10分,共计50分)1、马路边上有一棵树AB,树底A距离护路坡CD的底端D有3米,斜坡CD的坡角为60度,小明发现,下午2点时太阳光下该树的影子恰好为AD,同时刻1米长的竹竿影长为0.5米,下午4点时又发现该树的部分影子落在斜坡CD上的DE处,且,如图所示(1)树AB的高度是_米;(2)求DE的长2、一个几何体的三种视图如图所示,(1)这个几何体的名称是_,其侧面积为_;(2)在右面方格图中画出它的一种表面展开图;(3)求出左视图中AB的长3、如图1,是一个长方体截成的几何体,请在网格中依次

5、画出这个几何体的三视图4、如图,由10个同样大小的小正方体搭成的几何体(1)请分别画出几何体从正面和从上面看到的形状图:(2)设每个正方体的棱长为1,求出上图原几何体的表面积;(3)如果从这个几何体上取出一个小正方体,在表面标上整数a、b、c、d、e、f,然后将其剪开展开成平面图形如图所示放置,已知正方体相对的面上的数互为相反数,若整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,求下列代数式的值5、已知某几何体的俯视图是一个圆,下图是这个几何体的展开图(图中尺寸单位:),请求出它的体积,并画出这个几何体的三视图-参考答案-一、单选题1、A【分析】找出从几何体的正面看所得

6、到的图形即可【详解】解:从几何体的正面看,是一行两个并列的矩形故选:A【点睛】本题主要考查了几何体的三视图,准确分析判断是解题的关键2、A【分析】将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可【详解】如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点MBG/ME/DHBGA=MEC,BAG=DCE=90,MD=HECD=CM+DM=1+1.5=2.5故答案选:A【点睛】本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键3、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情

7、况,继而得出答案【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状4、D【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可【详解】解:从物体左面看,是左边2个正方形,右边1个正方形故选:D.【点睛】本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项5、C【分析】根据三视图的性质得出主视图的形状进而得出答案【详解】解:正方体从上面看到的形状图是正方形,故A项不符合题意;圆柱从上面看到

8、的形状图是圆,故B项不符合题意;圆锥从上面看到的形状图是带圆心的圆,故D项不符合题意三棱柱从上面看到的形状图是三角形,故C项符合题意;故选:C【点睛】本题题主要考查了简单几何体的三视图,熟悉主视图性质是解题关键6、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,是内外两个正方形,故选A【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线7、C【分析】根据三视图即可完成【详解】此几何体为一个圆柱故选:C【点睛】本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状8、A【分析】根据几何体的三视图判

9、断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键9、D【分析】先确定从上面看到的形状图是俯视图,再确定看到的平面图形,再逐一判断各选项即可.【详解】解:如图所示的几何体从上面看到的形状图是俯视图,从左至右可以看到三个正方形,并且依次排列,所以正确的形状图是D,故D符合题意,A,B,C不符合题意,故选:D【点睛】本题考查的是三视图,掌握“从上面看到的平面图形是俯视图”是解题的关键.10、C【分析】根据几何体的三视图解答【详解】解:圆柱从正面看是长方形,故A选项不符合题意;四棱柱从正面

10、看是长方形,故B选项不符合题意;圆锥从正面看是三角形,从左面看是三角形,故C选项符合题意;三棱柱从正面看是长方形,故D选项不符合题意;故选:C【点睛】此题考查简单几何体的三视图,正确掌握各几何体的三视图及视角的位置是解题的关键二、填空题1、15【解析】【分析】由三视图可知这个立体图形是底面半径为3,高为4的圆锥,利用勾股定理求出其母线长,据此可以求得侧面积【详解】由三视图可知圆锥的底面半径为3,高为4,所以母线长为=5,所以侧面积为=35=15,故答案为:15【点睛】本题主要考查了由三视图确定几何体和求圆锥的侧面积,涉及勾股定理,牢记公式是解题的关键,难度不大2、【解析】【分析】由题意易得AB

11、C,根据相似比求解即可【详解】解:,24,即,故答案为:【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用,解题的关键是利用中心投影的特点可知这两组三角形相似,利用其相似比作为相等关系求出所需要的线段3、【解析】【分析】由已知中的三视图,可以判断出该物体是由下部分为底面直径为10、高10的圆柱,上部分是底面直径为10,高为5的圆锥组成的,代入圆柱、圆锥的体积公式,即可得到答案【详解】解:由三视图知,该物体是由下部分为底面直径为10、高10的圆柱,上部分是底面直径为10,高为5的圆锥组成的体积V圆柱+V圆锥故答案为:【点睛】本题考查的知识点是由三视图还原实物图,圆柱和圆锥的体积,

12、其中根据三视图准确分析出几何体的形状及底面半径、高等关键数据是解答本题的关键4、越大【解析】【分析】根据中心投影的特点可知,当乒乓球越接近灯泡时,离光源越近,影子越大,即可求解【详解】解:根据中心投影的特点可知,当乒乓球越接近灯泡时,离光源越近,影子越大,故答案为:越大【点睛】此题考查了中心投影的特点,等长的物体平行于地面放置时,离点光源越近,影子越长;离点光源越远,影子越短,熟练掌握中心投影的性质是解题的关键5、 10 16【解析】【分析】综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有23=6个小正方体,最少有2个小正方体,第三层最多有3个小正

13、方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块【详解】解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,故这个几何体最少有10个小正方形,最多有16个,故答案为:10,16【点睛】本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”得出结果三、解答题1、(1)6;(2)(3)米【分析】(1)根据在同一时刻物高和影长成正比,即可求出结果;(2)延长BE交AD延长线于F点,根据30度角的

14、直角三角形即可求出结果【详解】解:(1)同时刻1米长的竹竿影长为0.5米,AD3米,树AB的高度是6米;故答案为:6;(2)如图,延长BE,交AD于点F,AB6,CDF60,BECD,DFE30,AF6,DF63,DEDF (63)(3)米【点睛】本题考查了解直角三角形的应用以及平行投影解决本题的关键是作出辅助线得到AB的影长2、(1)正三棱柱,72;(2)画图见解析;(3)【分析】(1)由三视图所表现特征可知几何体为正三棱柱,正三棱柱侧面积为三个矩形,则侧面积为(2)如图所示,答案不唯一(3)中过E点作FG垂线,垂足为H,可求得FH=2,再由勾股定理即可求得FH=【详解】(1)该几何体由主视

15、图和左视图可判断为棱柱,由俯视图可判断为正三棱柱(2)如图所示(3)如图所示,中过E点作FG垂线,垂足为H为等边三角形FH=2,EHF=EHG=90【点睛】本题考查了三视图以及勾股定理,三视图是从正面、左面、上面以平行视线观察物体所得的图形,判断三视图时应结合实物,变换角度去观察,结合空间想象能力,由三视图求几何体的侧面积或表面积时,首先要根据三视图描述几何体,再根据三视图“长对正、高平齐、宽相等”的关系和轮廓线的位置确定各个面的尺寸,然后求表面积或侧面积3、见解析【分析】根据三视图的定义,作出图形即可【详解】解:三视图,如图所示【点睛】本题考查作图三视图,解题的关键是理解三视图的定义,属于中

16、考常考题型4、(1)见解析;(2)38;(3)-1【分析】(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,1,2;从左面看有3列,每列小正方形数目分别为3,2,1;据此可画出图形;(2)分别得到各个方向看的正方形面数,相加后乘1个面的面积即可求解;(3)根据已知条件得出d,e,f的值,再根据正方体相对面的特点得到a,b,c的值,从而代入化简【详解】解:(1)如图所示:(2)(11)(62+62+62+2)=138=38故该几何体的表面积是38(3)整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,d=-1,e=1,f=15,由图可知:“a”与“d”相对,

17、“b”与“f”相对,“c”与“e”相对,a=1,b=-15,c=-1,【点睛】本题考查了几何体的三视图画法,正方体展开图,由立体图形可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字5、,见解析【分析】先由展开图想象出几何体的形状,知道它是上部分为圆锥,下部分为圆柱的组合体,由它的俯视图是一个圆可以知道,圆锥的底面积与圆柱的底面积相等,然后通过计算圆锥和圆柱的体积,得出所求结果【详解】由题意得:此几何体是由一个底面直径为8cm,母线为5cm的圆锥和底面直径为8cm,高为20cm的圆柱组成,圆锥和圆柱的底面半径为4cm,圆锥的高为(cm),v=,三视图如图:【点睛】本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁