《难点解析北师大版九年级数学下册第一章直角三角形的边角关系专项测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版九年级数学下册第一章直角三角形的边角关系专项测评试题(含详解).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第一章直角三角形的边角关系专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值
2、是( )ABCD2、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为()ABCD3、若tanA=2,则A的度数估计在( )A在0和30之间B在30 和45之间C在45和60之间D在60和90之间4、将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为( )ABCD5、在正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cosB的值为()ABCD6、在中
3、,那么的值等于( )ABCD7、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin650.9,cos650.4,tan652.1)()A3.2米B3.9米C4.7米D5.4米8、已知RtABC中,则的值为( )ABCD9、如图,在RtABC中,C90,BC1,以下正确的是( )ABCD10、如图,在直角坐标平面内有一点,那么射线与轴正半轴的夹角的正切值是( )ABCD第卷(非选择题 70分)二
4、、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB90,D是斜边AB的中点,DEAC,垂足为E,若DE2,CD,则sinDEB的值为 _2、如图,点A、B、C都在格点上,则CAB的正切值为_3、如图,在上述网格中,小正方形的边长均为1,点A,B,O都在格点上,则AOB的正弦值是_4、如图,在矩形ABCD中,AB4,BC3,将BCD沿射线BD平移长度a(a0)得到BCD,连接AB,AD,则当ABD是直角三角形时,a的长为 _5、如图,等边的边长为2,点O是的中心,绕点O旋转,分别交线段于D,E两点,连接,给出下列四个结论:;四边形的面积始终等于;周长的最小值为3其中正确的
5、结论是_(填序号)三、解答题(5小题,每小题10分,共计50分)1、(1)解方程: (2)解方程:(用公式法)(3)计算: (4)计算:2、如图,在ABC中,B30,BC40cm,过点A作ADBC,垂足为D,ACD75(1)求点C到AB的距离;(2)求线段AD的长度3、在中,为锐角且(1)求的度数;(2)求的正切值4、计算:4sin60|2| +(1)20215、如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角为45,斜坡CD的坡度i34,CD100米,在观景台C处测得瀑布顶端A的仰角为37,若点B、D、E在同一水平线上,求瀑布的落差AB(
6、参考数据:sin370.6,cos370.8,tan370.75)-参考答案-一、单选题1、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k2133故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标2、D【分析】根据DAC60,ODOA,得出OAD为等边三角形
7、,再由DFE为等边三角形,得EDFEFDDEF60,即可得出结论正确;如图,连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;如图,延长OE至E,使OEOD,连接DE,通过DAFDOE,DOE60,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,从而得出结论正确;【详解】解:DAC60,ODOA,OAD为等边三角形,DOADAOODA60,ADOD,DFE为等边三角形,EDFEFDDEF60,DFDE,BDE+FDOADF+FDO60,BDEADF,ADF+AFD+DAF180,ADF+AFD180DAF120
8、,EFC+AFD+DFE180,EFC+AFD180DFE120,ADFEFC,BDEEFC,故结论正确;如图,连接OE,由得ADOD,DFDE,ODA60,EDF60,ADFODE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60,COD180AOD120,COECODDOE1206060,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确; 由得ODEADF,OCEODE,ADFOCE,即ADFECF,故结论正确;如图,延长OE至E,使OEOD,连接DE,DAFDOE,DOE60,点F在线段AO上从点A至点O运动时,点E从点O沿线段OE
9、运动到E,OEODADABtanABD6tan302,点E运动的路程是2,故结论正确;故选:D【点睛】本题主要考查了矩形性质,等边三角形判定和性质,全等三角形判定和性质,等腰三角形的判定和性质,点的运动轨迹等,解题的关键是熟练掌握全等三角形判定和性质、等边三角形判定和性质等相关知识3、D【分析】由题意直接结合特殊锐角三角函数值进行分析即可得出答案.【详解】解:,.故选:D.【点睛】本题考查特殊锐角三角函数值的应用,熟练掌握是解题的关键.4、D【分析】由AFECFD90得,根据折叠的定义可以得到CBCF,则,即可求出的值,继而可得出答案【详解】AFECFD90,由折叠可知,CBCF,矩形ABCD
10、中,ABCD,故选:D【点睛】本题考查了折叠变换的性质及锐角三角函数的定义,解题关键是得到CBCF5、B【分析】如图所示,过点A作AD垂直BC的延长线于点D得出ABD为等腰直角三角形,再根据45角的余弦值即可得出答案【详解】解:如图所示,过点A作ADBC交BC延长线于点D,AD=BD=4,ADB=90,ABD为等腰直角三角形,B=45故选B【点睛】本题主要考查了求特殊角三角函数值,解题的关键在于根据根据题意构造直角三角形求解6、A【分析】根据三角函数的比值即可得出答案【详解】如图,故选:A【点睛】本题考查锐角三角函数,掌握三角函数的比值是解题的关键7、C【分析】过点O作OEAC于点F,延长BD
11、交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65,OFxtan65,BF3+x,tan35,OF(3+x)tan35,2.1x0.7(3+x),x1.5,OF1.52.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键8、A【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案【详解】解:在RtABC中,C90,AC2,BC1,由勾股定理,得AB,cosB,故选:A【点睛
12、】本题考查了锐角三角函数,利用勾股定理求出斜边,再利用余弦等于邻边比斜边9、C【分析】根据勾股定理求出AB,三角函数的定义求相应锐角三角函数值即可判断【详解】解:在RtABC中,C90,BC1,根据勾股定理AB=,cosA=,选项A不正确;sinA,选项B不正确;tanA,选项C正确;cosB,选项D不正确故选:C【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握锐角三角函数定义是解题的关键10、D【分析】作PMx轴于点M,构造直角三角形,根据三角函数的定义求解【详解】解:作PMx轴于点M,P(6,8),OM=6,PM=8,tan=故选:D【点睛】本题考查解直角三角形,解题的关键是学会添加
13、常用辅助线,构造直角三角形解决问题二、填空题1、【分析】由题意可得,求得、的边即可求解【详解】解:ACB90,DEAC,又D是斜边AB的中点,即,在中,在中,故答案为:【点睛】此题考查了锐角三角函数的定义,涉及了平行线分线段成比例的性质,勾股定理,解题的关键是掌握并灵活利用相关性质进行求解2、【分析】过作垂直于的延长线于点,则为直角三角形,解直角三角形即可求解【详解】如图:过作垂直于的延长线于点,为直角三角形在中故答案为:【点睛】本题考查的是解直角三角形,解题关键是结合网格的特点构造直角三角形,利用锐角三角形函数解答3、【分析】利用勾股定理求出AO、BO的长,再由=AB2=AOBC,得出BC,
14、sinAOB可得答案【详解】解:如图,过点O作OEAB于点E,过点B作BCOA于点C由勾股定理,得AO=,BO=,=ABOE=AOBC,BC= =,sinAOB= =故答案为:【点睛】本题主要考查三角函数的综合应用,熟练掌握正弦函数的意义、勾股定理的应用及三角形的面积求法是解题的关键4、或【分析】分两种情况:如图1,DAB90,如图2,ABD90,分别作辅助线,构建相似三角形,证明三角形相似列比例式可得对应a的值【详解】解:分两种情况:如图1,DAB90,延长CB交AB于G,过点D作DHAB,交BA的延长线于H,HAGBBGB90,四边形ABCD是矩形,BADC90,ADBC3,tanABD,
15、即,设BG3x,BG4x,BBa5x,由平移得:DDBB5x,DH3+3x,AHBG4x,AGABBG44x,DABHAD+BAB90,ADH+HAD90,ADHGAB,HAGB90,DHAAGB,即,x,a5;如图2,ABD90,延长CB交AB于M,则CMAB,AMB90,由平移得:BCBC3,同理设BM3m,BM4m,则BBa5m,AM44m,ABM+DBC90,MAB+ABM90,DBCMAB,CAMB90,DCBBMA,即,m,a5m5;综上,a的值是或【点睛】本题主要考查了矩形的性质、平移的性质、勾股定理、三角函数、三角形相似的性质和判定、直角三角形的性质等知识点;解题关键是画出两种
16、情况的图形,依题意进行分类讨论5、【分析】如图:连接OB、OC,利用等边三角形的性质得ABO=OBC=OCB=30,再证明BOD=COE,可证BODCOE,即BD=CE、OD=OE,则可对进行判断;利用 得到四边形ODBE的面积 ,则可对进行判断;再作OHDE,则DH=EH,计算出SDOE利用SDOE随OE的变化而变化和四边形ODBE的面积为定值可对进行判断;由于BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OEBC时,OE最小,BDE的周长最小,计算出此时OE的长则可对进行判断【详解】解:连接OB、OC,如图,等边ABC=ACB=60,点O是ABC的中心,OB=OC,OB、
17、OC分别平分ABC和ACB,ABO=OBC=OCB=30BOC=120,即BOE+COE=120,而DOE=120,即BOE+BOD=120,BOD=COE,在BOD和COE中 BODCOE,BD=CE,OD=OE,所以正确;四边形ODBE的面积 =,故正确;如图:作OHDE,则DH=EH,DOE=120,ODE=_OEH=30, ,HE 即SDOE随OE的变化而变化,而四边形ODBE的面积为定值, 所以错误;BD=CE,BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=2+DE=2+OE当OEBC时,OE最小,BDE的周长最小,此时 BDE周长的最小值=2+1=3,所以止确故填【
18、点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质等知识点,灵活应用相关知识成为解答本题的关键三、解答题1、(1)x11,x23;(2)x1,x2;(3);(4)【分析】(1)用因式分解法解方程即可;(2)用公式法解方程即可;(3)求出特殊角三角函数值,再计算即可;(4)先计算负指数、特殊角三角函数值、0指数和绝对值,再计算即可【详解】解:(1)解方程:, ,x11,x23;(2)解方程:(用公式法),方程有两个不相等的实数根,x1,x2;(3)计算: = ,=;(4)计算:,=,=【点睛】本题考查了解一元二次方程和实数的运算,解题关键是熟记特殊角三角函数值,熟练运用不同方法
19、解一元二次方程2、(1)20cm;(2)【分析】(1)过C点作CHAB于H,如图,在RtBCH中,利用含30的直角三角形三边的关系易得CHBC20;(2)在RtBCD中利用含30的直角三角形三边的关系可得CH20,BHCH20,再利用三角形外角性质计算出BAC45,则ACH为等腰直角三角形,所以AHCH20,然后利用面积法求AD【详解】解:(1)过C点作CHAB于H,如图,在RtBCH中,B30,CHBC4020cm,即点C到AB的距离为20cm;(2)在RtBCH中,B30,CH20cm,BHCH20cm,ACDB+BAC,BAC753045,ACH为等腰直角三角形,AHCH20cm,AB(
20、20+20)cm,ADBCCHAB,AD(10+10)cm【点睛】本题主要考查了含30直角三角形的性质 、解直角三角形、三角形的外角以及三角形的面积等知识点,正确作出辅助线、构造直角三角形成为解答本题的关键3、(1)60,(2)3【分析】(1)根据特殊角三角函数值直接求解即可;(2)作ADBC于D,求出AD3,CD1,由三角函数定义即可得出答案【详解】解:(1)B为锐角且,B60;(2)作ADBC于D,如图所示:,BDAB3,AD,BC4,BD3,CDBCBD1,tanC3【点睛】本题考查了解直角三角形、特殊锐角的三角函数值、三角函数定义等知识;熟练掌握直角三角形的性质和特殊锐角的三角函数值是
21、解题的关键4、-3【分析】根据特殊角三角函数,绝对值,有理数的乘方,化简二次根式的计算法则求解即可【详解】解:原式= = -3【点睛】本题主要考查了特殊角三角函数,绝对值,有理数的乘方,二次根式的化简,熟知相关近计算法则是解题的关键5、480米【分析】首先根据斜坡CD的坡度i34,CD100米,求出CE60,DE80,然后得出三角形ABD是等腰直角三角形,进而得到ABBD,然后根据仰角的三角函数值列出方程求解即可【详解】解:,设CE3x,则DE4x在直角CDE中,CD100(3x)2(4x)21002解得:x20CE60,DE80在直角ADB中,ADB45,三角形ABD是等腰直角三角形,ABBD作CFAB于F,则四边形CEBF是矩形CEBF60,CFBEAB80AFAB60,解得AB480答:瀑布的落差约为480米【点睛】此题考查了三角函数的应用,解题的关键是正确分析题目中的等量关系列方程求解