《精品试题北师大版七年级数学下册第一章整式的乘除同步测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版七年级数学下册第一章整式的乘除同步测评试题(含答案解析).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第一章整式的乘除同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是( )A2a3b5abBx8x2x6C(ab3)2ab6D(x2)2x242、下列各式中,计算
2、结果为x10的是()Ax5+x5Bx2x5Cx20x2D(x5)23、某中学开展“筑梦冰雪,相约冬奥”的学科活动,设计几何图形作品表达对冬奥会的祝福小冬以长方形ABCD的四条边为边向外作四个正方形,设计出“中”字图案,如图所示若四个正方形的周长之和为24,面积之和为12,则长方形ABCD的面积为()A1BC2D4、下列计算中,正确的是( )ABCD5、设,则的值为()ABC1D6、下列运算中,结果正确的是( )ABCD7、下列各式中,能用平方差公式计算的是()A(a+b)(ab)B(a+b)(ab)C(a+b)(ad)D(a+b)(2ab)8、任意给一个非零数,按下列程序进行计算,则输出结果为
3、A0B1CD9、下列计算正确的是( )ABCD10、若,则的值为( )A5B2C10D无法计算第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:_2、乘积的计算结果是_3、计算:_ 4、若,则的值为_5、我国宋朝数学家杨辉在他的著作详解九章算法中提出“杨辉三角”(如图),此图揭示了(n为非负整数)展开式的项数及各项系数的有关规律例如:,它只有一项,系数为1;,它有两项,系数分别为1,1,系数和为2;,它有三项,系数分别为1,2,1,系数和为4;,它有四项,系数分别为1,3,3,1,系数和为8;根据以上规律,展开式的系数和为_三、解答题(5小题,每小题10分,共计
4、50分)1、阅读下列材料:利用完全平方公式,可以把多项式变形为的形式例如,观察上式可以发现,当取任意一对互为相反数的值时,多项式的值是相等的例如,当1,即3或1时,的值均为0;当2,即4或0时,的值均为3我们给出如下定义:对于关于的多项式,若当取任意一对互为相反数的值时,该多项式的值相等,则称该多项式关于对称,称是它的对称轴例如,关于2对称,2是它的对称轴请根据上述材料解决下列问题:(1)将多项式变形为的形式,并求出它的对称轴;(2)若关于的多项式关于5对称,则 ;(3)代数式的对称轴是 2、计算:(1)x(x2)(x2)(x2),其中x(2)(2xy)(2xy)4(xy)2(3)(a3)2a
5、(a8)(4)(x2)2x(x4)3、计算:(1)(2)4、已知axaya5,axaya(1)求x+y和xy的值;(2)运用完全平方公式,求x2+y2的值5、(1)计算:2ab2c2(a2b)2(2)计算:(x+6)(4x1)-参考答案-一、单选题1、B【分析】由相关运算法则计算判断即可【详解】2a和3b不是同类项,无法计算,与题意不符,故错误; x8x2x6,与题意相符,故正确;(ab3)2a2b6,与题意不符,故错误;(x2)2x2+2x+4,与题意不符,故错误故选:B【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键2、D【分析】利用合
6、并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可【详解】解:A、x5+x52x5,故A不符合题意;B、x2x5x7,故B不符合题意;C、x20x2x18,故C不符合题意;D、(x5)2x10,故D符合题意;故选D【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键3、B【分析】设矩形的边,根据四个正方形周长之和为24,面积之和为12,得到,再根据,即可求出答案【详解】解:设,由题意得,即,即长方形的面积为,故选:B【点睛】本题考查完全平方公式的意义和应用,掌握完全平方公式的结构特征是正确应用的前提4、D
7、【分析】根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D【详解】A. ,故选项A不正确; B. ,故选项B不正确;C. ,故选项C不正确;D. ,故选项D正确故选:D【点睛】本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键5、A【分析】先根据同底数幂的乘法法则求出的值,再代入计算即可得【详解】解:,解得,则,故选:A【点睛】本题考查了同底数幂的乘法、一元一次方程的应用,熟练掌握同底数幂的乘法法则是解题关键6
8、、C【分析】根据同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式的计算法则计算求解即可【详解】解:A、,计算错误,不符合题意;B、,计算错误,不符合题意;C、,计算正确,符合题意;D、,计算错误,不符合题意;故选C【点睛】本题主要考查了同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式,熟知相关计算法则是解题的关键7、B【分析】根据平方差公式(a+b)(ab)a2b2对各选项分别进行判断【详解】解:A、(a+b)(ab)(a+b)(a+b)两项都相同,不能用平方差公式计算故本选项不符合题意;B、(a+b)(ab)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;
9、C、(a+b)(ad)中存在相同项,没有相反项,不能用平方差公式计算故本选项不符合题意;D、(a+b)(2ab)中存在相反项,没有相同项,不能用平方差公式计算故本选项不符合题意;故选:B【点睛】本题考查了平方差公式运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方8、C【分析】根据程序图列出算式,再计算即可求解【详解】解:根据题意得:故选:C【点睛】本题主要考查了整式的混合运算,理解程序图列出算式是解题的关键9、C【分析】根据幂的运算及整式的乘法运算即可作出判断【详解】A、,故计算不正确;B、,故计算不正确;C、,故计算正确;D、,故计算不正确故选:C【点睛】本
10、题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键10、A【分析】利用平方差公式:进行求解即可【详解】解:,故选A【点睛】本题主要考查了平方差公式,熟知平方差公式是解题的关键二、填空题1、【分析】把它们化为指数相同的幂,再比较大小即可【详解】解:2444=(24)111=16111,3333=(33)111=27111,而1611127111,24443333,故答案为:【点睛】本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键2、【分析】根据多项式乘以多项式的运算法则即可得【详解】解:,故答案为:【点睛】本题考查了多项式乘以多项式,
11、熟练掌握运算法则是解题关键3、【分析】由题意先计算同底数幂的乘法和同底数幂的除法,最后合并同类项即可得出答案.【详解】解:.故答案为:.【点睛】本题考查整式的乘除,熟练掌握同底数幂的乘法和同底数幂的除法运算是解题的关键.4、68【分析】利用完全平方公式,把化为求解即可【详解】解:,故答案为:68【点睛】本题主要考查了完全平方公式,解题的关键是熟记完全平方公式5、【分析】由前4个等式可以得到一列有规律的数: 再总结归纳出一般规律即可.【详解】解:,系数为1;,系数分别为1,1,系数和为2;,系数分别为1,2,1,系数和为4;,系数分别为1,3,3,1,系数和为8;归纳可得:展开式的系数和为: 故
12、答案为:【点睛】本题考查的是数字规律的探究,掌握“从具体到一般的探究方法并总结规律”是解本题的关键.三、解答题1、(1),对称轴为x3;(2)5;(3)【分析】(1)加上,同时再减去,配方,整理,根据定义回答即可;(2)将配成,根据对称轴的定义,对称轴为x=-a,根据对称轴的一致性,求a即可;(3)将代数式配方成=,根据定义计算即可【详解】(1)该多项式的对称轴为x3;(2)=,对称轴为x=-a,多项式关于5对称,-a=-5,即a=5,故答案为:5;(3)=,对称轴为x=,故答案为:【点睛】本题考查了配方法,熟练进行配方是解题的关键2、(1)2x+4,3(2)8x2+8xy+3y2(3)14a
13、+9(4)8x+4【分析】(1)先计算乘法,再合并即可求解;(2)先利用平方差公式和完全平方公式计算,再合并即可求解;(3)先计算乘法,再合并即可求解;(4)先计算乘法,再合并即可求解(1)解:原式x22x(x24)x22xx2+42x+4,当x时,原式1+43(2)解:(2x+y)(2xy)+4(x+y)24x2y2+4(x2+2xy+y2)4x2y2+4x2+8xy+4y28x2+8xy+3y2(3)(a3)2a(a+8)=a26a+9a28a14a+9(4)(x2)2x(x+4)(x2)2x(x+4)x2+44xx24x8x+4【点睛】本题主要考查了整式的混合运算,熟练掌握平方差公式和完
14、全平方公式,整式的混合运算法则是解题的关键3、(1)(2)【分析】(1)直接利用整式的乘法运算法则计算进而得出答案;(2)直接利用整式的乘法运算法则展开后,合并同类项计算进而得出答案;(1)解:,;(2)解:,【点睛】本题主要考查了整式的混合运算,解题的关键是正确掌握相关运算法则4、(1)x+y5,xy1;(2)13【分析】(1)根据同底数幂的乘除法法则解答即可;(2)根据完全平方公式解答即可【详解】解:(1)因为axaya5,axaya,所以ax+ya5,axya,所以x+y5,xy1;(2)因为x+y5,xy1,所以(x+y)225,(xy)21,所以x2+2xy+y225,x22xy+y21,+,得2x2+2y226,所以x2+y213【点睛】本题考查了同底数幂的乘除法,完全平方公式解题的关键是掌握同底数幂的乘除法法则,以及完全平方公式:(ab)2=a22ab+b25、(1);(2)【分析】(1)先计算积的乘方与幂的乘方,再计算整式的除法、负整数指数幂即可得;(2)根据多项式乘多项式法则即可得【详解】解:(1)原式;(2)原式【点睛】本题考查了积的乘方与幂的乘方、整式的除法、负整数指数幂、多项式乘多项式,熟练掌握各运算法则是解题关键