《精品试卷沪科版九年级数学下册第24章圆专项测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第24章圆专项测试试题(无超纲).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B,C均在O上,连接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A22.5B45C90D67
2、.52、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD3、如图,在RtABC中,点D、E分别是AB、AC的中点将ADE绕点A顺时针旋转60,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:AECADB;CP存在最大值为;BP存在最小值为;点P运动的路径长为其中,正确的( )ABCD4、下列图形中,可以看作是中心对称图形的是( )ABCD5、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )A60B90C120D1806、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对7、如图,边长为5的等边三角形中,M是
3、高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D8、下列汽车标志中既是轴对称图形又是中心对称图形的是( )ABCD9、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD10、下列图形中,是中心对称图形也是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是_ 2、如图,PA,PB分别与O相切于A,B两点,C是优弧AB上的一个动点,若P = 50,则ACB _3、如图,半圆
4、O中,直径AB30,弦CDAB,长为6,则由与AC,AD围成的阴影部分面积为_4、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中为区别口味,他打算制作“* 饼干”字样的矩形标签粘贴在盒子侧面为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90(如图)已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_ cm(取3.1)5、如图,将RtABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,ABC38,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 _三、解答题(5小题,每小题10分,共计
5、50分)1、如图,AB为O的弦,OCAB于点M,交O于点C若O的半径为10,OM:MC3:2,求AB的长2、如图,ABC内接于O,D是O的直径AB的延长线上一点,DCBOAC过圆心O作BC的平行线交DC的延长线于点E(1)求证:CD是O的切线;(2)若CD4,CE6,求O的半径及tanOCB的值3、如图,AB是O的直径,点D,E在O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C(1)求证:CD是O的切线(2)若,求阴影部分的面积4、如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D (1)求证:DB=DE;(2)若AB=12,BD
6、=5,求AC长5、在等边中,是边上一动点,连接,将绕点顺时针旋转120,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值-参考答案-一、单选题1、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键2、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分
7、能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键3、B【分析】根据,点D、E分别是AB、AC的中点得出DAE=90,AD=AE=,可证DAB=EAC,再证DABEAC(SAS),可判断AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,根
8、据AECADB,得出DBA=ECA,可证P=BAC=90,CP为A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在RtAEC中,CE=,可判断CP存在最大值为正确;AECADB,得出BD=CE=,在RtBPC中,BP最小=可判断BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,可求ACE=30,根据圆周角定理得出AOP=2ACE=60,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,可得ABD=30根据圆周角定理得出AOP=2AB
9、D=60,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断点P运动的路径长为正确即可【详解】解:,点D、E分别是AB、AC的中点DAE=90,AD=AE=,DAB+BAE=90,BAE+EAC=90,DAB=EAC,在DAB和EAC中,DABEAC(SAS),故AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,AECADB,DBA=ECA,PBA+P=ECP+BAC,P=BAC=90,CP为A的切线,AECP,DPE=PEA=DAE=90,四边形DAEP为矩形,AD=AE,四边形DAEP为正方形,PE=AE=3,在RtAEC中,CE=,CP最大=PE+
10、EC=3+,故CP存在最大值为正确;AECADB,BD=CE=,在RtBPC中,BP最小=,BP最短=BD-PD=-3,故BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,ACE=30,AOP=2ACE=60,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,ABD=30,AOP=2ABD=60,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,POP=POA+AOP=60+60=120,L故点P运动的路径长为正确;正确的是故选B【点睛】本
11、题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键4、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、C【分析】根据旋转对称图形的概念
12、(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120故选C【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键6、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键7、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,
13、根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角
14、形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点8、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合9、B【详解】解:A是轴对称图形,不是中心对
15、称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合10、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及
16、轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合二、填空题1、6【分析】如图,连接OA、OB、OC、OD、OE、OF,证明AOB、BOC、DOC、EOD、EOF、AOF都是等边三
17、角形,再求出圆的半径即可【详解】解:如图,连接OA、OB、OC、OD、OE、OF正六边形ABCDEF,ABBCCDDEEFFA,AOBBOCCODDOEEOFFOA60,AOB、BOC、DOC、EOD、EOF、AOF都是等边三角形,的周长为,的半径为,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键2、【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得ACB【详解】解:连接,如图,PA,PB分别与O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解
18、题的关键3、45【分析】连接OC,OD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解【详解】解:连接OC,OD,直径AB=30,OC=OD=,CDAB,SACD=SOCD,长为6,阴影部分的面积为S阴影=S扇形OCD=,故答案为:45【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键4、9.3【分析】根据弧长公式进行计算即可,【详解】解:粘贴后标签上边缘所在弧所对的圆心角为90,底面半径为6 cm,cm,故答案为:【点睛】本题考查了弧长公式,牢记弧长公式是解题的关键5、76或142【分析】设AB
19、的中点为O,连接OD,则BOD为点D在量角器上对应的角,根据圆周角定理得BOD=2BCD,根据等腰三角形的性质分BC为底边和BC为腰求BCD的度数即可【详解】解:设AB的中点为O,连接OD,则BOD为点D在量角器上对应的角,RtABC的斜边AB与量角器的直径恰好重合,A、C、B、D四点共圆,圆心为点O,BOD=2BCD,若BC为等腰三角形的底边时,如图射线CD1,则BCD1=ABC=38,连接OD1,则BOD1=2BCD1=76;若BC为等腰三角形的腰时,当ABC为顶角时,如图射线CD2,则BCD2=(180-ABC)2=71,连接OD2,则BOD2=2BCD2=142,当ABC为底角时,BC
20、D=180-2ABC=104,不符合题意,舍去,综上,点D在量角器上对应的度数是76或142,故答案为:76或142【点睛】本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键三、解答题1、【分析】连接OA,根据O的半径为10,OM:MC3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可【详解】解:如图,连接OAOM:MC3:2,OC10,OM=6OCAB,OMA90,AB2AM在RtAOM中,AO10,OM6,AM8AB2AM =16【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键2、
21、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,OCA=DCB,由圆周角定理可得ACB=90,进而得到OCD=90,即可得出结论;(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即O的半径为3,由平行线的性质得到OCB=EOC,在RtOCE中,可求得tanEOC=2,即tanOCB=2(1)证明:OAOC,OACOCA,DCBOAC, OCADCB, AB是O的直径,ACB90,OCA+OCB90,DCB+OCB90,即OCD90,OCDC, OC是O的半径,CD是O的切线;(2)O
22、EBC,CD=4,CE=6,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,OCDC,OCD是直角三角形,在RtOCD中,OC2+CD2=OD2,(3x)2+42=(5x)2,解得,x=1,OC=3x=3,即O的半径为3,BCOE,OCB=EOC,在RtOCE中,tanEOC=,tanOCB=tanEOC=2【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键3、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有ODB是等边三角形,然后可得AEO也为
23、等边三角形,进而可得ODAC,最后问题可求证;(2)由(1)易得AE=ED,CED=OBD=60,然后可得圆O的半径,进而可得扇形OED和OED的面积,则有弓形ED的面积,最后问题可求解【详解】(1)证明:连接OD,如图所示:四边形BDEO是平行四边形,ODB是等边三角形,OBD=BOD=60,AOE=OBD=60,OE=OA,AEO也为等边三角形,EAO=DOB=60,AEOD,ODC+C=180,CDAE,C=90,ODC=90,OD是圆O的半径,CD是O的切线(2)解:由(1)得EAO=AOE=OBD=BOD=60,EDAB,EAO=CED=60,AOE+EOD+BOD=180,EOD=
24、60,DEO为等边三角形, ED=OE=AE,CDAE,CED=60,CDE=30,设OED的高为h,【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键4、(1)见解析;(2)【分析】(1)由切线性质及等量代换推出4=5,再利用等角对等边可得出结论;(2)由已知条件得出sinDEF和sinAOE的值,利用对应角的三角函数值相等推出结论.【详解】(1)如图,DCOA, 1+3=90, BD为切线,OBBD, 2+5=90, OA=OB, 1=2,3=4,4=5,在DEB中,4=5,DE=DB.(2)如图,作DFAB于F,
25、连接OE,DB=DE, EF=BE=3,在RtDEF中,EF=3,DE=BD=5,DF=sinDEF= , AOE,,AOE=DEF, 在RtAOE中,sinAOE= , AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.5、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含3
26、0度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键