《难点解析沪科版九年级数学下册第24章圆专项测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析沪科版九年级数学下册第24章圆专项测试试题(无超纲).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,与的两边分别相切,其中OA边与相切于点P若,则OC的长为( )A8BCD2、如图,圆形螺帽的内接正六边形的面积为
2、24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm3、如图,ABC外接于O,A30,BC3,则O的半径长为( )A3BCD4、平面直角坐标系中点关于原点对称的点的坐标是( )ABCD5、计算半径为1,圆心角为的扇形面积为( )ABCD6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦7、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80B70
3、C60D508、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD9、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD10、如图,是ABC的外接圆,已知,则的大小为( )A55B60C65D75第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,与x轴交于、两点,点P是y轴上的一个动点,PD切于点D,则ABD的面积的最大值是_;线段PD的最小值是_2、点(2,-3)关于原点的对称点的坐标为_3、已知一个扇形的半径是1,圆心角是120,则这个扇形的面积是_4、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为
4、_(结果保留)5、在ABC中,AB = AC,以AB为直径的圆O交BC边于点D要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _ (写出所有正确答案的序号)BAC 60;45 ABC AB;AB DE 60时,若时,点E与点A重合,不符合题意,故不满足;当ABC时,点E与点A重合,不符合题意,当ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,所以,当45 ABC 60时,点E关于直线AD的对称点在线段OA上,故满足条件;当时,点E关于直线AD的对称点在线段OA上,故不满足条件;当AB DE AB时,点E关于直线AD
5、的对称点在线段OA上,故满足条件;所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45 ABC 60或AB DE AB故答案为【点睛】本题考查了圆周角定理,正确判断出每种情况是解答本题的关键三、解答题1、2+【分析】连接AC,CM,AB,过点C作CHOA于H,设OC=a利用勾股定理构建方程解决问题即可【详解】解:连接AC,CM,AB,过点C作CHOA于H,设OC=aAOB=90,AB是直径,A(-4,0),B(0,2),AMC=2AOC=120,在RtCOH中,在RtACH中,AC2=AH2+CH2,a=2+ 或2-(因为OCOB,所以2-舍弃)
6、,OC=2+,故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题2、(1)20;(2);(3)AF= CF+BF,理由见解析【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,则BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆时针旋转60得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60,得到BFC=120,即可证明F、C、G三点共线,得到AFG
7、是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,AC=AE, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60得到ACG,AF=AG,FAG=60,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180,
8、CAF+CFA+ACD+CFD=180,BFD=ACD=60,AFE=AFC=60,BFC=120,BAC+BFC=180,ABF+ACF=180,ACG+ACF=180,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键3、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,OCA=DCB,由圆周角定理可得ACB=90,进而得到OCD=90,即可得出结论;(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=
9、OC=3x,OD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即O的半径为3,由平行线的性质得到OCB=EOC,在RtOCE中,可求得tanEOC=2,即tanOCB=2(1)证明:OAOC,OACOCA,DCBOAC, OCADCB, AB是O的直径,ACB90,OCA+OCB90,DCB+OCB90,即OCD90,OCDC, OC是O的半径,CD是O的切线;(2)OEBC,CD=4,CE=6,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,OCDC,OCD是直角三角形,在RtOCD中,OC2+CD2=OD2,(3x)2+42=(5x)2,解得,x=1,OC=3x=3
10、,即O的半径为3,BCOE,OCB=EOC,在RtOCE中,tanEOC=,tanOCB=tanEOC=2【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键4、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得ABC=BCE=60,求出OCB=30,则OCE=90,结论得证;(2)根据题意由条件可得DBC=30,BEC=90,进而即可求出CE=BC3【详解】解:(1)证明:如图连接OC、OB是等边三角形 又 与O相切; (2)四边形ABC
11、D是O的内接四边形,D为的中点, 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识解题的关键是正确作出辅助线,利用圆的性质进行求解5、(1)见详解;(2)【分析】(1)连接OD,由圆周角定理可得AOD=ABC,从而得ODBC,进而即可得到结论;(2)连接AC,交OD于点F,利用勾股定理可得AC,再证明四边形DFCE是矩形,进而即可求解【详解】(1)证明:连接OD,是的中点,ABC=2ABD,AOD=2ABD,AOD=ABC,ODBC,是的切线;(2)连接AC,交OD于点F,AB是直径,ACB=90,AC=,是的中点,ODAC,AF=CF=3,DF=5-4=1,E=EDF=DFC=90,四边形DFCE是矩形,DE=CF=3,CE=DF=1,AD=CD=,ADB=90,【点睛】本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键