《模拟测评:2022年北京市燕山地区中考数学模拟真题-(B)卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《模拟测评:2022年北京市燕山地区中考数学模拟真题-(B)卷(含答案详解).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市燕山地区中考数学模拟真题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间
2、t(小时)关于行驶速度v(千米时)的函数图像是( )ABCD2、如图,将ABC绕点C按逆时针方向旋转至DEC,使点D落在BC的延长线上已知A32,B30,则ACE的大小是( )A63B58C54D563、要使式子有意义,则()ABCD4、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )A5或6B6或7C5或6或7D6或7或85、已知有理数在数轴上的位置如图所示,且,则代数式的值为( )AB0CD6、对于二次函数yx22x3,下列说法不正确的是( )A开口向下B当x1时,y随x的增大而减小C当x1时,y有最大值3D函数图象与x轴交于点(1,0)和(3,0)7、下列说法正确的是
3、()A等腰三角形高、中线、角平分线互相重合B顶角相等的两个等腰三角形全等C底角相等的两个等腰三角形全等D等腰三角形的两个底角相等8、如图,是多功能扳手和各部分功能介绍的图片阅读功能介绍,计算图片中的度数为( ) 线 封 密 内 号学级年名姓 线 封 密 外 A60B120C135D1509、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知SAFE=1,则SABD的值是( )A9B10C12D1410、下列图形中,是中心对称图形的是( )AB CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某班学生分组参加活动,原来每组8人,后
4、来重新编组,每组6人,这样比原来增加了两组,这个班共有多少名学生?若设共有x名学生,可列方程为_2、如图,已知ABC与ADE均是等腰直角三角形,BACADE90,ABAC1,ADDE,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是 _3、已知点A的坐标是,点B是正比例函数的图像上一点,若只存在唯一的点B,使为等腰三角形,则k的取值范围是_4、如图,若,平分,则的度数是_ 线 封 密 内 号学级年名姓 线 封 密 外 5、最新人口普查数据显示上海的常住人数约为24870000人,将24870000用科学记数法表示是:_三、解答题(5小题,每小题10分,共计50分)1、(数学认识)数
5、学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系 (构造模型)(1)如图,已知ABC,在直线BC上用直尺与圆规作点D,使得ADBACB(不写作法,保留作图痕迹)(应用模型)已知ABC是O的内接三角形,O的半径为r,ABC的周长为c(2)如图,若r5,AB8,求c的取值范围(3)如图,已知线段MN,AB是O一条定长的弦,用直尺与圆规作点C,使得cMN(不写作法,保留作图痕迹)2、如图,射线、分别表示从点出发的向北、东、南、西四个方向,将直角三角尺的直角顶点与点重合(1)图中与互余的角是_;(2)用直尺和圆规
6、作的平分线;(不写作法,保留作图痕迹)在所做的图形中,如果,那么点在点的_方向3、如图,AB是O的直径,弦CDAB,垂足为E,F为AB延长线上一点,连接CF,DF(1)若OE3,BE2,求CD的长;(2)若CF与O相切,求证DF与O相切 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,在等边ABC中,D、E分别是边AC、BC上的点,且CD=CE,点C与点F关于BD对称,连接AF、FE,FE交BD于G(1)连接DE、DF,则DE、DF之间的数量关系是_,并证明;(2)若,用等式表示出段BG、GF、FA三者之间的数量关系,并证明5、如图,抛物线yx2bxc(a0)与x轴交于4B两点,且点B
7、的坐标为(2,0),与y轴交于点C,抛物线的对称轴为直线x1,点D为抛物线的顶点,连接AD,AC(1)求抛物线的解析式;(2)如图1,点P是抛物线上第三象限内的一个动点,过点P作PMx轴交AC于点M,求PM的最大值及此时点P的坐标;(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线AC上一动点,直接写出使得由点C,B,M,Q组成的四边形是平行四边形的点Q的坐标;并把求其中一个点Q的坐标的过程写出来-参考答案-一、单选题1、B【分析】直接根据题意得出函数关系式,进而得出函数图象【详解】解:由题意可得:t=,是反比例函数,故只有选项B符合题意故选:B【点
8、睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键2、C【分析】先根据三角形外角的性质求出ACD=63,再由ABC绕点C按逆时针方向旋转至DEC,得到ABCDEC,证明BCE=ACD,利用平角为180即可解答【详解】解:A=33,B=30,ACD=A+B=33+30=63,ABC绕点C按逆时针方向旋转至DEC, 线 封 密 内 号学级年名姓 线 封 密 外 ABCDEC,ACB=DCE,BCE=ACD,BCE=63,ACE=180-ACD-BCE=180-63-63=54故选:C【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到ABCDEC3、B【分析】根
9、据分式有意义的条件,分母不为0,即可求得答案【详解】解:要使式子有意义,则故选B【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键4、C【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到【详解】解:如图,原来多边形的边数可能是5,6,7故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况5、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解【详解】解:由图可知:,故选:C【点睛】本题考查数轴与有理数,以
10、及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌 线 封 密 内 号学级年名姓 线 封 密 外 握化简绝对值的方法以及整式的加减运算法则是解题关键6、C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】解:y=-x2+2x+3=-(x-1)2+4,a=-10,该函数的图象开口向下,故选项A正确;对称轴是直线x=1,当x1时,y随x的增大而减小,故选项B正确;顶点坐标为(1,4),当x=1时,y有最大值4,故选项C不正确;当y=0时,-x2+2x+3=0,解得:x1=-1,x2=3,函数图象与x轴的交点为(-1,0)和(3,
11、0),故D正确故选:C【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答7、D【分析】根据等腰三角形的性质和全等三角形的判定方法对选项一一分析判定即可【详解】解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,该选项说法错误,不符合题意;B、顶角相等的两个等腰三角形不一定全等,因为边不相等,该选项说法错误,不符合题意;C、底角相等的两个等腰三角形不一定全等,因为没有边对应相等,该选项说法错误,不符合题意;D、等腰三角形的两个底角相等,该选项说法正确,符合题意;故选:D【点睛】本题考查等腰三角形的性质与全等判定,掌握等腰三角形的性
12、质与等腰三角形全等判定是解题关键8、B【分析】观察图形发现是正六边形的一个内角,直接求正六边形的内角即可【详解】=故选:B【点睛】本题考查正多边形的内角,解题的关键是观察图形发现是正六边形的一个内角9、C【分析】 线 封 密 内 号学级年名姓 线 封 密 外 过点F作MNAD于点M,交BC于点N,证明AFECFB,可证得,得MN=4MF,再根据三角形面积公式可得结论【详解】解:过点F作MNAD于点M,交BC于点N,连接BD,四边形ABCD是平行四边形,AD/BC,AD=BCAFECFB DE=2AEAD=3AE=BC ,即 又 故选:C【点睛】本题主要考查了平行四边形的性质,相似三角形的判定与
13、性质,解答此题的关键是能求出两三角形的高的数量关系10、B【分析】根据中心对称图形的定义求解即可【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意故选:B【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形二、填空题1、【分析】设这个班学生共有人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了组,根据此列方程即可【详解】解:设这个班学生共有人, 线 封
14、密 内 号学级年名姓 线 封 密 外 根据题意得: 故答案为:【点睛】此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少组2、【分析】过点A作AHBC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明ABFDCA,进而对应边成比例即可求出FB的长【详解】解:如图,过点A作AHBC于点H,BAC=90,AB=AC=1,BC=,AHBC,BH=CH=,AH=,AD=DE=,DH=,CD=DH-CH=,ABC=ACB=45,ABF=ACD=135,DAE=45,DAF=135,BAC=90,BAF+DAC=45,BAF+F=45,F=DAC,ABFDCA,BF
15、=,故答案为:【点睛】本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到ABFDAC3、【分析】作OA的垂直平分线,交OA于点C,y轴于点D根据题意结合垂直平分线的性质可判断出当该正比 线 封 密 内 号学级年名姓 线 封 密 外 例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间时,在x0的条件下,该函数图象上只存在唯一的点B,使为等腰三角形再根据点A的坐标,即可求出直线CD的斜率,即可得出k的取值范围【详解】如图,作OA的垂直平分线,交OA于点C,y轴于点D由垂直平分线的性质可知,当点B在OA的垂直平分线上时,即满足为等腰三角形,但此时在该正比例函数上还有
16、一点B可使为等腰三角形,如图,和都为等腰三角形,此时不符合只存在唯一的点B,使为等腰三角形,故要想只存在唯一的点B,使为等腰三角形,并在x0的条件下,只能B点不在OA的垂直平分线上,即该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间设OA的函数解析式为:,则解得:设CD的函数解析式为:,CD在OA的垂直平分线上,即,解得:该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间,即故答案为:【点睛】本题考查垂直平分线的性质,等腰三角形的定义,一次函数和正比例函数的图像和性质,根据题意理解当该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间
17、时,在x0的条件下,该函数图象上只存在唯一的点B,使为等腰三角形是解答本题的关键4、【分析】先求解 利用角平分线再求解 由可得答案.【详解】解: , 平分, 故答案为:【点睛】本题考查的是垂直的定义,角平分线的定义,角的和差运算, 熟练的运用“角的和差关系与角平分线的定义”是解本题的关键.5、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 绝对值大于1的数可以用科学记数法表示,一般形式为a10n, 为正整数,且比原数的整数位数少1,据此可以解答【详解】解:故答案是:【点睛】本题考查用科学记数法表示较大的数,熟练掌握一般形式为 ,其中, 是正整数,解题的关键是确定 和 的值三、解答题1、
18、(1)见解析;(2)16c88;(3)见解析【分析】(1)可找到两个这样的点:当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;(2)考虑最极端的情况:当C与A或B重合时,则,可得此时,根据题意可得,当点C为优弧AB的中点时,连接AC并延长至D,使得,利用等腰三角形的性质及三角形外角性质可得点D的运动轨迹为一个圆,点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接
19、AO,根据垂径定理及勾股定理可得,当AD为直径时,c最大即可得;(3)依照(1)(2)的做法,方法一:第1步:作AB的垂直平分线交O于点P;第2步:以点P为圆心,PA为半径作P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交P于点E;第5步:连接AE交O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得;第2步:作的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交ABE的外接圆于点F;第5步:连接AF交O于点C,即为所求【详解】(1)如图所示:当点D在BC的延长线上时:以点C为圆心,AC长为半
20、径,交BC的延长线于点D,连接AD,即为所求;当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;证明:,;同理可证明;(2)当C与A或B重合时,则, 线 封 密 内 号学级年名姓 线 封 密 外 如图,当点C为优弧AB的中点时,连接AC并延长至D,使得,同弧所对的圆周角相等,为定角,为定角,点D的运动轨迹为一个圆,当点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,由垂径定理可得:CE垂直平分AB,在中,AD为直径时最长,最长,的周长最长c最长为,c的取值范围为:;(3)方法一:第1步:作AB的垂直平分线交
21、O于点P;第2步:以点P为圆心,PA为半径作P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交P于点E;第5步:连接AE交O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得; 线 封 密 内 号学级年名姓 线 封 密 外 第2步:作的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交ABE的外接圆于点F;第5步:连接AF交O于点C,即为所求【点睛】题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键2、(1)、(2)作图见解
22、析;北偏东或东偏北【分析】(1)由题可知,故可知与互余的角;(2)如图所示,以O为圆心画弧,分别与OE、OA相交;以两交点为圆心,大于两点长度的一半为半径画弧,连接两弧交点与O点的射线即为角平分线;,进而得出P与O有关的位置(1)解:图中与互余的角是和;故答案为:、(2)如图,为所作;,平分,即点在点的北偏东方向或东偏北故答案为:北偏东或东偏北【点睛】本题考查了余角,角平分线以及坐标系中的位置解题的关键在于正确的求解角度3、(1)8;(2)见解析 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)连接OC,利用勾股定理求解CE4,再利用垂径定理可得答案;(2)证明 再证明 可得 从而
23、可得结论.【详解】(1)解:连接OC,CDAB,CEDE,OCOBOEBE325, 在RtOCE中,OEC90,由勾股定理得:CE2OC2OE2,CE25232,CE4, CD2CE8. (2)解:连接OD,CF与O相切,OCF90,CEDE,CDAB,CFDF, 又OFOF,OCOD, OCFODF,ODFOCF90,即ODDF 又D在O上, DF与O相切【点睛】本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明OCFODF得到ODFOCF90是解本题的关键.4、(1),证明见解析(2),证明见解析【分析】(1)只要证明是等边三角形,再根据轴对称的性质可得结论;(2)结论:连接
24、,延长,交于点,只要证明是等边三角形,即可解决问题;(1)解:,是等边三角形, 线 封 密 内 号学级年名姓 线 封 密 外 ,是等边三角形,点与点关于对称,故答案为:;(2)解:结论:理由如下:连接,延长,交于点,是等边三角形,点与点关于对称,设,则,是等边三角形,且,【点睛】本题考查等边三角形的性质和判定、全等三角形的判定和性质、轴对称变换,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题5、 线 封 密 内 号学级年名姓 线 封 密 外 (1)(2)最大值为2,(3),或,【分析】(1)用待定系数法即可得抛物线的解析式为;(2)由,得直线解析式为,设,可得,即得时,
25、的值最大,最大值为2,;(3)由已知得平移后的抛物线解析式为,设,而,以、为对角线,则的中点即是的中点,即,解得,或,;以、为对角线,得,方程组无解;以、为对角线,解得,或,(1)解:点的坐标为在抛物线,抛物线的对称轴为直线,解得,抛物线的解析式为;(2)在中,令得或,在中,令得,设直线解析式为,则,解得,直线解析式为,设,由得,时,的值最大,最大值为2;此时;(3)将原抛物线向右平移,使得点刚好落在原点, 线 封 密 内 号学级年名姓 线 封 密 外 平移后的抛物线解析式为,设,而,以、为对角线,则的中点即是的中点,解得,或,;以、为对角线,方程组无解; 以、为对角线,解得,或,;综上所述,或,【点睛】本题考查二次函数综合应用,涉及待定系数法、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度