《《概率的意义》教学设计.doc》由会员分享,可在线阅读,更多相关《《概率的意义》教学设计.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、概率的意义教学设计 教学目标:知识与技能:1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义教学思考:让学生经历猜想试验-收集数据-分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.解决问题:在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.情感态度与价值观:在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.教学重点在具体情境中了解概率意义.教学难点对
2、频率与概率关系的初步理解教具准备 壹元硬币数枚、图钉数枚、多媒体课件教学过程见文档教学过程一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢? 由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,
3、尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的, 新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.设计意图:日常生活中运用投硬币方式来解决实际问题的例子很
4、多,所以从学生已有的生活经验出发,选择学生感兴趣的话题切入,设计问题,让学生大胆猜想结论,为下一步由学生完成抛掷硬币的试验做好铺垫。二 、动手实践,合作探究1教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上” 的频数及 “正面朝上”的频率,整理试验的数据,并记录下来.2教师巡视学生分组试验情况.注意:(1)观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2)要求真实记录试验情况.对于合作学习中
5、有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究. 解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好表格.并根据所整理的数据,在图上标注出对应
6、的点,完成统计图.抛掷次数50100150200250300350400450500“正面向上”的频数 “正面向上”的频率 0.51正面向上的频率投掷次数n10050250150500450300350200想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律? 注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝
7、上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小. 说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.设计意图:让学生亲历数据的收集、整理、描述与分析的过程,从而了解概率这一重要概念的实际背景,进一步发展学生的统计意识,发现规律,图
8、表方式可以帮助学生直观的分析试验结果,相信随机事件的发生存在着统计规律性。问题的设置在于引导学生发现:随着试验次数的增多,频率值渐趋稳定于0.5。 为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性-大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表3).表3试验者抛掷次数(n)“正面朝上”次数(m)“正面向上”频率(m/n)棣莫弗204810610.518布丰404020480.50
9、69费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一
10、下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验收集数据分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新
11、知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p. 注意指
12、出:1概率是随机事件发生的可能性的大小的数量反映.2概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同. 想一想(学生交流讨论)问题2频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同问题3:事件A发生的概率P(A)有取值范围吗?当A是必然事件时,P(A)是多少?当A是不可能事件时,P(A)是多少?教师
13、引导学生归纳,建构概率的定义,学生相互讨论,相互交流,尝试着给出事件A的概率定义及其取值范围。得到当A为必然事件时,P(A)=1,当A是不可能事件时,P(A)=0。说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.设计意图:三个问题的设置,目的在于:(1)帮助理解概率的定义,在n次试验中,事件A发生的频率m满足0mn,所以,01,频率所稳定的常数P满足0P1,因此0P(A)
14、1;(2)区分频率与概率,实现难点突破。频率是随着试验次数的改变而变化的,而概率是一个常数。当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率,是概率的近似值,而概率是频率趋于稳定的那个值。四练习巩固,发展提高. 学生练习1书上P143.练习.1. 巩固用频率估计概率的方法.2书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.设计意图:求频率值基本无误,但频率趋于稳定的那个值,也就是概率,不一定能够准确的找出来。希望通过这组练习教学生学会观察频率稳定在哪个常数的附近,从而选取这个常数作为相应事件的概率,更具体地理解概率的
15、意义,深刻体会进行大量重复试验是确定概率的一种方法,学会概率定义在实际问题中的运用。五归纳总结,交流收获:1学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.设计意图:实现本堂教学目标,掌握核心内容。作业设计(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概设计意图:巩固用大量重复随机试验所得到的数据来计算频率,确定概率的方法,进一步发展学生的统计意识,深刻认识概率的意义。教学反思 每次投硬
16、币的过程都是一个随机事件,由于众多的偶然的因素的影响,每次测的的结果都具有偶然性。但随着实验次数的增加,大量重复后,频率却是几乎必然地稳定于某一定数。也就是说,随机事件在一次试验中发生与否是随机的,但是随机事件中含有规律性,贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索的热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人合作交流。在知识的主动构建过程中促进了教学目标的有效达成,更重要的是,主动参与数学活动的经历使他们受益终生。 新的教育理念:动手实践,自主探索和合作交流。本课针对教学内容的特点,旨在遵循从具体到抽象,从感性到理性的渐进认识规律,一学生在实际生活中熟悉的,生动的,鲜活的实例,引导学生掌握本课的内容,增加学习兴趣,这样从易到难,从简单到复杂,逐渐深入地引入概率的意义,显得自然又流畅。 组织好小组合作学习,加强师生之间的互动,培养学生在独立思考的基础上,能够理解他人的意见,并学会与他人合作的能力。4 本堂课的教学设计,在实施过程中基本上达到预期目标。容易出现的问题是:各教学活动环节的时间分配不好控制;活动实施过程中教师容易忽视对个别学生的关注。