《2022年沪科版八年级下册数学期末专项测评-卷(Ⅰ)(含答案及解析).docx》由会员分享,可在线阅读,更多相关《2022年沪科版八年级下册数学期末专项测评-卷(Ⅰ)(含答案及解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末专项测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对
2、角线AC上,得到折痕AE,则点E到点B的距离为( )ABCD2、如图,数轴上点表示的数是-1,点表示的数是1,以点为圆心,长为半径画弧,与数轴交于原点右侧的点,则点表示的数是( )ABCD3、若0是关于x的一元二次方程mx25xm2m0的一个根,则m等于()A1B0C0或1D无法确定4、如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片如果按图方式摆放,刚好放下4个;如果按图方式摆放,刚好放下3个若BC4a,则按图方式摆放时,剩余部分CF的长为( )ABCD5、探索一元二次方程x2+3x50的一个正数解的过程如表:x101234x2+3x575151323可以看出方程的一个正
3、数解应界于整数a和b之间,则整数a、b分别是()A1,0B0,1C1,2D1,56、小颖同学参加学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为86分、90分、80分,若这三项依次按照50%,40%,10%的百分比确定成绩,则她的成绩为( )A84分B85分C86分D87分7、化简的结果是( )ABCD18、下列式子为一元二次方程的是()A5x21B4a281CD(3x2)(x+1)8y39、下列二次根式中属于最简二次根式的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD10、下列二次根式中,化简后可以合并的是( )A和B和C和D和第
4、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某试验田种植了杂交水稻,2019年平均亩产800千克,2021年平均亩产1000千克,设此水稻亩产量的平均增长率为x,则可列出的方程是_2、的有理化因式是 _3、当等式成立时,_4、写出的一个同类二次根式_5、如图,和都是等边三角形,连接AD,BD,BE,下列四个结论中:;,正确的是_(填写所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、如图,/,AC平分,且交BE于点C(1)作的角平分线交AD于点F(要求:尺规作图,不写作法和结论,保留作图痕迹);(2)根据(1)中作图,连接CF,求证:四边形ABCF
5、是菱形2、,均为等腰直角三角形,点E在AB上;(1)求证:;(2)若,求的面积3、已知在中,P是的中点,B是延长线上的一点,连接,(1)如图1,若,求的长;(2)过点D作,交的延长线于点E,如图2所示,若,求证:;(3)如图3,若,是否存在实数m,使得当时,?若存在,请直接写出m的值;若不存在,请说明理由 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,已知在RtABC中,ACB90,AC8,BC16,D是AC上的一点,CD3点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动设点P的运动时间为连接AP(1)当t3秒时,求AP的长度(结果保留根号);(2)当点P在线段AB的垂直平分
6、线上时,求t的值;(3)过点D作DEAP于点E在点P的运动过程中,当t为何值时,能使DECD?5、已知关于的方程有两个实数根(1)求k的取值范围;(2)若方程的两实数根分别为x1、x2,且满足求k的值-参考答案-一、单选题1、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】本题考查了勾股定理和矩形与折叠问题;二
7、次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键2、A【分析】首先根据勾股定理求出AC长,再根据圆的半径相等可知AP=AC,即可得出答案【详解】解:BCAB,ABC=90,AC=,以A为圆心,AC为半径作弧交数轴于点P, 线 封 密 内 号学级年名姓 线 封 密 外 AP=AC=,点P表示的数是,故选:A【点睛】此题主要考查了勾股定理,以及数轴与实数,关键是求出AC的长3、A【分析】根据一元二次方程根的定义,将代入方程解关于的一元二次方程,且根据一元二次方程的定义,二次项系数不为0,即可求得的值【详解】解:0是关于x的一元二次方程mx25xm2m0的一个根,且解得故选A【点睛
8、】本题考查了一元二次方程根的定义,一元二次方程的定义,因式分解法解一元二次方程,注意是解题的关键一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程4、A【分析】由题意得出图中,BE=a,图中,BE=a,由勾股定理求出小直角三角形的斜边长为a,进而得出答案【详解】解:BC=4a,图中,BE=a,图中,BE=a,小直角三角形的斜边长为,图中纸盒底部剩余部分CF的长为4a-2a=a;故选:A【点睛】本题考查了矩形的性质以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键5
9、、C【分析】根据表格中的数据,可以发现当时,当时,从而可以得到整数、的值【详解】解:由表格可得,当时,当时,的一个正数解为1和2之间,的一个正数解应界于整数和之间,、分别是1,2,故选:C【点睛】本题考查估算一元二次方程的近似解,解题的关键是明确题意,由表格中的数据,可以估算出方程的解所在的范围 线 封 密 内 号学级年名姓 线 封 密 外 6、D【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案【详解】解:根据题意得:8650%+9040%+8010%=43+36+8=87(分)故选:D【点睛】本题考查的是加权平均数的求法,本题易出现的错误是求86,90,80这三个数的算术平均
10、数,对平均数的理解不正确7、D【分析】根据确定的取值范围,将里面的数化成完全平方形式,利用二次根式的性质去根号,然后合并同类项即可【详解】解:由可知: 故原式化简为:故选:D【点睛】本题主要是考查了去二次根号以及二次根式的基本性质,熟练掌握二次根式的性质,求解该题的关键8、B【详解】解:A、不是方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、分母中含有未知数,不是一元二次方程,故本选项不符合题意;D、含有两个未知数,不是一元二次方程,故本选项不符合题意;故选:B【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的次数的最高次数为1的整式方程称为一元二
11、次方程是解题的关键9、D【分析】利用最简二次根式的定义:被开方数不含分母,分母中不含根号,且被开方数不含能开的尽方的因数,判断即可【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、是最简二次根式,符合题意故选:D【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键10、B【分析】先化简,再根据同类二次根式的定义解答即可【详解】解:、化简得:和不是同类二次根式,不能合并同类项,不符合题意;、化简得:和是同类二次根式,可以合并,不符合题意;、化简得:和,不是同类二次根式,不能合并同类项,不符合题意;、和被开方数
12、不同,不是同类二次根式,不符合题意;故选:B【点睛】本题主要考查了同类二次根式的定义,解题的关键是掌握化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式二、填空题1、800(1+x)2=1000【分析】设此水稻亩产量的平均增长率为x,根据“2019年平均亩产(1+增长率)2=2021年平均亩产”即可列出关于x的方程【详解】解:设此水稻亩产量的平均增长率为x,则可列出的方程是800(1+x)2=1000故答案是:800(1+x)2=1000【点睛】本题考查了由实际问题抽象出一元一次方程,根据数量关系列出关于x的一元一次方程是解题的关键2、【分析】根据有理化因式的定义(两个根式相乘的
13、积不含根号)即可得答案【详解】解:因为,所以的有理化因式是,故答案为:【点睛】本题考查了有理化因式,熟练掌握有理化的方法是解题关键3、#【分析】由等式成立,得到再化简二次根式即可.【详解】解: 等式成立, 由得:, 线 封 密 内 号学级年名姓 线 封 密 外 由得:,所以 , 所以原式故答案为:【点睛】本题考查的是二次根式有意义的条件,二次根式的化简,掌握“公式中二次根式有意义的条件”是化简二次根式的关键.4、(答案不唯一)【详解】解:的同类二次根式为故答案为:(答案不唯一)【点睛】本题主要考查了同类二次根式的定义,熟练掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就
14、把这几个二次根式叫做同类二次根式是解题的关键5、【分析】利用等边三角形的性质即可证明出;在四边形中,根据,可得,即;先求出,得,通过等量代换即可;根据即可判断【详解】解:和都是等边三角形,故正确;,在四边形中,故错误;,故正确;,不一定等于,不一定成立, 线 封 密 内 号学级年名姓 线 封 密 外 故错误;故答案是:【点睛】本题考查了等边三角形的性质,三角形全等的判定定理、勾股定理、多边形内角和,解题的关键掌握等边三角形的性质,通过等量代换的思想进行求解三、解答题1、(1)见解析(2)见解析【分析】(1)根据尺规作角平分线的方法作图即可;(2)根据角平分线定义和平行线性质证明BAC=ACB,
15、AFB=CBF,再根据三角形的等角对等边证得AF=AB=BC,然后根据平行四边形的判定和菱形的判定证明即可(1)解:如图,射线BF即为所求作的角平分线;(2)解:AC平分BAD,BF平分ABE,BAC=FAC,ABF=CBF,ADBE,ACB=FAC,AFB=CBF,BAC=ACB,AFB=ABF,AB=BC,AB=AF,BC=AF,又AFBC,四边形ABCF是平行四边形,又AB=BC,四边形ABCF是菱形【点睛】本题考查尺规作图-作角平分线、角平分线的定义、平行线的性质、等腰三角形的判定、菱形的判定,熟练掌握相关知识的联系与运用是解答的关键2、(1)见详解;(2)5【分析】(1)利用SAS证
16、明即可;(2)过点E作EFBC于点F,在Rt中求出EC,再根据三角形面积公式求出即可(1)证明:,均为等腰直角三角形,AC=BC ,EC=DC,ACB=ECD=90,ACBACE=ECD-ACE,即:BCEACD,(SAS) 线 封 密 内 号学级年名姓 线 封 密 外 (2)解:由(小问1)知,BE=AD=,过点E作EFBC于点F,【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰三角形的性质及求三角形的面积,过点E作EFBC是解决本题的关键3、(1)4;(2)见解析;(3)存在,【分析】(1)根据,可得B=30,根据30直角三角形的性质可得,根据,可证是等边三角形,得出,根据P是的中
17、点,得出设,则,根据勾股定理,求(已舍去)即可(2)连接,根据DEAC,可得先证CPADPE(AAS),再证是等边三角形,可证CABEBA(SAS),得出即可;(3)存在这样的m,m=作DEAC交的延长线于E,连接,根据点P为CD中点,可得CP=DP,根据DEAC,可得CAP=DEP,先证APCEPD(AAS),得出,当时,作于F,可得,可得,得出再证ACBBEA(SAS),得出即可【详解】(1)解:,B=180-CAB-ACB=180-90-60=30,是等边三角形,P是的中点,在中,设,则,(已舍去),(2)证明:如图1,连接, 线 封 密 内 号学级年名姓 线 封 密 外 DEAC,在和
18、中,CPADPE(AAS),又DEAC,是等边三角形,在CAB和EBA中,CABEBA(SAS),(3)存在这样的m,m=解:如图3,作DEAC交的延长线于E,连接,点P为CD中点,CP=DP,DEAC,CAP=DEP,在APC和EPD中,APCEPD(AAS),AP=EP, 线 封 密 内 号学级年名姓 线 封 密 外 当时,作于F,点E,F重合,在ACB和BEA中,ACBBEA(SAS),存在,使得【点睛】本题考查线段中点,等边三角形性质,勾股定理,解一元二次方程,三角形全等判定与性质,等腰直角三角形判定与性质,掌握线段中点,等边三角形性质,勾股定理,解一元二次方程,三角形全等判定与性质,
19、等腰直角三角形判定与性质是解题关键4、(1)(2)5(3)t为5或11【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)当点P在线段AB的垂直平分线上时,则PA=PB,再根据勾股定理列方程即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解(1)根据题意,得BP=2t,PC=162t=1623=10,AC=8,在RtAPC中,根据勾股定理,得:AP2答:AP的长为;(2)当点P在线段AB的垂直平分线上时,则PA=PB,BP=2t,PC=162t, AC=8,PA=PB=2t,ACB90,则, 线 封 密 内 号学级年名姓 线 封 密 外 即,解得t=5;答:
20、当点P在线段AB的垂直平分线上时t=5;(3)若P在C点的左侧,CP=162t,DE=DC=3,AD=8-3=5,AP=,解得:t=5,t=11(舍去);若P在C点的右侧,CP=2t16,DE=DC=3,AD=8-3=5同理:AP=,解得:t=5(舍去),t=11;答:当t为5或11时,能使DE=CD【点晴】本题考查了等腰三角形的性质、勾股定理,根据求一个数的平方根解方程,解决本题的关键是动点运动到不同位置时分类讨论5、(1)(2)k=2【分析】(1)由原方程有两个实数根,可得 再解不等式即可得到答案;(2)先根据结合一元二次方程根与系数的关系判断 再利用,得到关于的一元二次方程,再解方程即可并检验即可.(1)解:原方程有两个实数根,整理得: 解得:(2) 线 封 密 内 号学级年名姓 线 封 密 外 解:x1+x2=k+10,x10,x20,x1+x2=4x1x25k+1=4(k2+1)-5k2k-2=0k=-1或k=2kk=2【点睛】本题考查的是一元二次方程的解法,一元二次方程根的判别式,根与系数的关系,利用根与系数的关系结合的取值范围确定是解本题的关键.