《难点解析:北师大版七年级数学下册第一章整式的乘除难点解析试题.docx》由会员分享,可在线阅读,更多相关《难点解析:北师大版七年级数学下册第一章整式的乘除难点解析试题.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第一章整式的乘除难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算的结果是( )ABCD2、下列运算正确的是()Ax2+x2x4B2(a1)2a1C3a22a36a6D(x
2、2y)3x6y33、下列各式运算结果为的是( )ABCD4、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( )ABCD5、长方形的长为3x2y,宽为2xy3,则它的面积为()A5x3y4B6x2y3C6x3y4D6、下列计算中,正确的是ABCD7、下列计算正确的是( )A2a3b5abBx8x2x6C(ab3)2ab6D(x2)2x248、下列各式,能用平方差公式计算的是( )A(2ab)(2ba)B(a2b)(a2b)C(2a3b)(2a3b)D()()9、已知,则( )A2B3
3、C9D1810、计算3a(5a2b)的结果是()A15a6abB8a26abC15a25abD15a26ab第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则的值为_2、若是关于的完全平方式,则_3、有若干个大小形状完全相同的小长方形现将其中4个如图1摆放,构造出一个正方形,其中阴影部分面积为34;其中5个如图2摆放,构造出一个长方形,其中阴影部分面积为100(各个小长方形之间不重叠不留空),则每个小长方形的面积为_4、若x+a2x-4的结果中不含的一次项,则的值为_5、若ab3,ab1,则(ab)2_三、解答题(5小题,每小题10分,共计50分)1、已知2a2+
4、a-6=0,求代数式(3a+2)(3a-2)-(5a3-2a2)a的值2、计算:(1) (2)3、计算:(1)(2)4、(教材呈现)人教版八年级上册数学教材第112页的第7题:已知,求的值(例题讲解)老师讲解了这道题的两种方法:方法一方法二,(方法运用)请你参照上面两种解法,解答以下问题(1)已知,求的值;(2)已知,求的值(拓展提升)如图,在六边形中,对角线和相交于点G,当四边形和四边形都为正方形时,若,正方形和正方形的面积和为36,直接写出阴影部分的面积5、计算:-参考答案-一、单选题1、C【分析】根据同底数幂乘法的计算方法,即可得到答案【详解】故选:C【点睛】本题考查了同底数幂乘法的知识
5、;解题的关键是熟练掌握同底数幂乘法的计算方法,从而完成求解2、D【分析】直接利用合并同类项,单项式乘单项式法则,同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案【详解】解:Ax2+x22x2,故本选项错误;B.2(a1)2a2,故本选项错误;C.3a22a36a5,故本选项错误;D(x2y)3x6y3,故本选项正确故选:D【点睛】此题主要考查了整式运算,正确掌握相关运算法则是解题关键3、C【分析】根据同底数幂的乘除法及幂的乘方可直接进行排除选项【详解】解:A、与不是同类项,不能合并,故不符合题意;B、,计算结果不为,故不符合题意;C、,故符合题意;D、,计算结果不为,故不符合题意;故
6、选C【点睛】本题主要考查同底数幂的乘除法及幂的乘方,熟练掌握同底数幂的乘除法及幂的乘方是解题的关键4、C【分析】根据公式分别计算两个图形的面积,由此得到答案【详解】解:正方形中阴影部分的面积为,平行四边形的面积为x(x+2a),由此得到一个x,a的恒等式是,故选:C【点睛】此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键5、C【分析】根据长方形面积公式和单项式乘以单项式的计算法则求解即可【详解】解:由题意得:长方形的面积为3x2y2xy36x3y4,故选C【点睛】本题主要考查了单项式乘以单项式,熟知相关计算法则是解题的关键6、A【分析】根据单项式除以单项式法则解答【详解】
7、解:、,正确;、,故此选项错误;、,故此选项错误;、,故此选项错误;故选:A【点睛】此题考查了单项式除以单项式法则:系数与系数相除,相同字母与相同字母相除,正确掌握法则是解题的关键7、B【分析】由相关运算法则计算判断即可【详解】2a和3b不是同类项,无法计算,与题意不符,故错误; x8x2x6,与题意相符,故正确;(ab3)2a2b6,与题意不符,故错误;(x2)2x2+2x+4,与题意不符,故错误故选:B【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键8、B【分析】根据平方差公式为逐项判断即可【详解】A既没有相同项,也没有相反项,不能用平
8、方差公式进行计算,故本选项不符合题意;B原式,符合平方差公式,故本选项符合题意;C原式,只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D原式只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;故选:B【点睛】本题考查平方差公式,掌握平方差公式为是解答本题的关键9、D【分析】根据同底数幂的乘法逆运算进行整理,再代入求值即可【详解】解:,故选:D【点睛】本题主要考查求代数式的值,同底数幂乘法的逆用,解题的关键是把式子整理成整体代入的形式10、D【分析】根据单项式乘以多项式,先用单项式乘以多项式的每一项,再把所得的积相加计算【详解】解:3a(5a2b)15a26ab故选:D
9、【点睛】此题考查单项式乘多项式,关键是根据法则计算二、填空题1、25【分析】把已知条件,根据完全平方公式展开,然后代入数据计算即可求解【详解】解:,故答案是:25【点睛】本题考查了完全平方公式,解题的关键是熟记公式结构,灵活运用2、12【分析】利用完全平方公式的结构特征判断即可确定出m的值【详解】解:是一个完全平方式,故答案为:【点睛】本题主要考查了完全平方式,完全平方式分两种,一种是完两数和的平方,就是两个整式的和括号外的平方另一种是两数差的平方,就是两个整式的差括号外的平方算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央3、8【分析】设长方形的长为a,宽为b,由图1可得,
10、(a+b)2-4ab=34,由图2可得,(2a+b)(a+2b)-5ab=100,再利用整体思想进行变形求解即可【详解】解:设长方形的长为a,宽为b, 由图1可得,(a+b)2-4ab=34, 即a2+b2=2ab+34, 由图2可得,(2a+b)(a+2b)-5ab=100, 即a2+b2=50, 由得,2ab+34=50, 所以ab=8, 即长方形的面积为8, 故答案为:8【点睛】本题考查的是完全平方公式,多项式乘以多项式在几何图形中的应用,熟练的应用整式的乘法运算解决问题是解本题的关键.4、2【分析】将原式化简后,将含有的项进行合并,然后令其系数为即可求出答案【详解】解:原式=2x2-4
11、x+2ax-4a =2x2+(2a-4)x-4a 令,故答案为:【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用多项式乘以多项式的乘法法则,本题属于基础题型5、5【分析】直接利用完全平方公式计算得出答案【详解】解:a+b=3,ab=1,(a+b)2=9,则a2+2ab+b2=9,a2+b2=9-2=7;(a-b)2=a2-2ab+b2=7-2=5故答案为:5【点睛】此题主要考查了完全平方公式,正确将已知变形是解题关键三、解答题1、8【分析】先利用平方差公式和整式的除法法则运算,然后运用整式的加减运算化简,将已知式子化简代入求解即可【详解】解:,;,【点睛】题目主要考查整式的化简求值,熟练
12、掌握整式的混合运算法则是解题关键2、(1);(2)【分析】(1)分别计算同底数幂的乘法,积的乘方运算,再合并同类项即可;(2)先计算多项式乘以多项式,结合平方差公式进行简便运算,再合并同类项即可.【详解】解:(1) (2) 【点睛】本题考查的是幂的运算,合并同类项,整式的乘法运算,掌握“利用平方差公式进行简便运算”是解本题的关键.3、(1)(2)【分析】(1)直接利用整式的乘法运算法则计算进而得出答案;(2)直接利用整式的乘法运算法则展开后,合并同类项计算进而得出答案;(1)解:,;(2)解:,【点睛】本题主要考查了整式的混合运算,解题的关键是正确掌握相关运算法则4、(1);(2);拓展提升:
13、阴影部分的面积为14【分析】(1)根据已知例题变换完全平方公式即可得;(2)将两个完全平方公式进行变换即可得; 拓展提升:根据图形可得,结合题意,应用完全平方公式的变形可得,由正方形四条边相等及阴影部分的面积公式,代入求解即可得【详解】解:(1),;(2),;拓展提升:,由图可得:,四边形ABGF和四边形CDEG为正方形,SEGF+SBGC=12EGFG+12CGBG=BGCE=14,阴影部分的面积为14【点睛】题目主要考查完全平方公式的运用及变形,理解题中例题,综合运用两个完全平方公式是解题关键5、【分析】先根据完全平方公式计算,再合并同类项即可【详解】解:=【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键完全平方公式是(ab)2=a22ab+b2;平方差公式是(a+b)(a-b)=a2-b2