《真题汇总2022年河北省中考数学模拟真题测评-A卷(含答案及详解).docx》由会员分享,可在线阅读,更多相关《真题汇总2022年河北省中考数学模拟真题测评-A卷(含答案及详解).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北省中考数学模拟真题测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若是最小的自然数, 是最小的正整数,是绝对值最小的有理数,则的值为
2、( ) A-1B1C0D22、如果单项式2a2m5bn+2与ab3n2的和是单项式,那么m和n的取值分别为()A2,3B3,2C3,2D3,23、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个设甲种陀螺单价为x元,根据题意列方程为( )ABCD4、点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:(1)ba0;(2)|a|b|;(3)a+b0;(4)0其中正确的是( )A(1)(2)B(2)(3)C(3)(4)D(1)(4)5、如果,且,那么的值一定是( ) A正数B负数C0D不确定6、如果是一元二次方程的一个根,那么
3、常数是( )A2B-2C4D-47、已知,则( )ABCD8、若分式的值为0,则x的值是()A3或3B3C0D39、计算3.14-(-)的结果为() A6.28B2C3.14-D3.14+10、如图,是的边上的中线,则的取值范围为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、双曲线,当时,随的增大而减小,则_ 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,、是线段上的两点,且是线段的中点若,则的长为_3、若不等式组的解集是1x1,则(ab)2019_4、在下列实数(每两个3之间依次多一个“1”),中,其中无理数是_5、若直角三角形的两条直角边长
4、分别为cm,cm,则这个直角三角形的斜边长为_cm,面积为_ .三、解答题(5小题,每小题10分,共计50分)1、如图1,O为直线AB上一点,过点O作射线OC,AOC30,将一直角三角尺(M30)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方(1)若将图1中的三角尺绕点O以每秒5的速度,沿顺时针方向旋转t秒,当OM恰好平分BOC时,如图2求t值;试说明此时ON平分AOC;(2)将图1中的三角尺绕点O顺时针旋转,设AON,COM,当ON在AOC内部时,试求与的数量关系;(3)如图3若AOC60,将三角尺从图1的位置开始绕点O以每秒5的速度沿顺时针方向旅转当ON与O
5、C重合时,射线OC开始绕点O以每秒20的速度沿顺时针方向旋转,三角尺按原来的速度和方向继续旋转,当三角板运动到OM边与OA第一次重合时停止运动当射线OC运动到与OA第一次重合时停止运动设三角形运动的时间为t那么在旋转的过程中,是否存在某个时刻,使得ON,OM两条边所在的射线及射线OC,三条射线中的某一条射线是另两条射线的角平分线?若存在,直接写出所有满足条件的t的值,若不存在,请说明理由2、如图1,点、共线且,射线,分别平分和如图2,将射线以每秒的速度绕点顺时针旋转一周,同时将以每秒的速度绕点顺时针旋转,当射线与射线重合时,停止运动设射线的运动时间为(1)运动开始前,如图1,_,_(2)旋转过
6、程中,当为何值时,射线平分?(3)旋转过程中,是否存在某一时刻使得?若存在,请求出的值;若不存在,请说明理由3、如图,在数轴上记原点为点O,已知点A表示数a,点B表示数b,且a,b满足,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A与点B之间的距离记作AB 线 封 密 内 号学级年名姓 线 封 密 外 (1)_,_;(2)若动点P,Q分别从A,B同时出发向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,当点P和点Q重合时,P,Q两点停止运动当点P到达原点O时,动点R从原点O出发,以每秒3个单位长度的速度也向右运动,当点R追上点Q后立即返回,以同样的速度向点P
7、运动,遇到点P后再立即返,以同样的速度向点Q运动,如此往返,直到点P、Q停止运动时,点R也停止运动,求在此过程中点R行驶的总路程,以及点R停留的最后位置在数轴上所对应的有理数;(3)动点M从A出发,以每秒1个单位的速度沿数轴在A,B之间运动,同时动点N从B出发,以每秒2个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动设运动时间为t秒,是否存在t值,使得?若存在,请直接写出t值;若不存在,请说明理由4、已知:二次函数yx21(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象5、如图,在平面直角坐标系中,抛物线与直线交于,两点,其中,(1)求该抛物线的
8、函数表达式;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,过点和点分别作轴的平行线交直线于点和点,连接,求四边形面积的最大值;(3)在(2)的条件下,将抛物线沿射线平移个单位,得到新的抛物线,点为点的对应点,点为的对称轴上任意一点,点为平面直角坐标系内一点,当点,构成以为边的菱形时,直接写出所有符合条件的点的坐标,并任选其中一个点的坐标,写出求解过程-参考答案-一、单选题1、C【分析】由a是最小的自然数,b是最小的正整数,c是绝对值最小的数可分别求出a、b、c的值,可求出a-bc的值【详解】解:因为a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,所以a=0
9、,b=1,c=0,所以a-bc=0-10=0,故选:C【点睛】本题考查有理数的有关概念,注意:最小的自然数是0;最小的正整数是1,绝对值最小的有理数是02、B 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据题意可知单项式2a2m5bn+2与ab3n2是同类项,结合同类项的定义中相同字母的指数也相同的条件,可得方程组,解方程组即可求得m,n的值【详解】解:根据题意,得解得m3,n2故选:B【点睛】同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项3、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程【详
10、解】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据题意可得:,故选:C【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程4、B【分析】根据图示,判断a、b的范围:3a0,b3,根据范围逐个判断即可.【详解】解:根据图示,可得3a0,b3,(1)ba0,故错误;(2)|a|b|,故正确;(3)a+b0,故正确;(4)0,故错误故选B【点睛】此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围5、A【分析】根据有理数的加减法法则判断即可【详解】解:a0,b0,且
11、|a|b|,-b0,|a|-b|,=a+(-b)0故选:A【点睛】本题考查有理数的加减法法则用到的知识点:减去一个数等于加上这个数的相反数,绝对值不等的异号加减,取绝对值较大的加数符号 线 封 密 内 号学级年名姓 线 封 密 外 6、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立【详解】把x=2代入方程x2=c可得:c=4故选C【点睛】本题考查的是一元二次方程的根即方程的解的定义7、A【分析】先把C45.15化成159的形式,再比较出其大小即可【详解】解:,即故选:A【点睛】本题考查的是角的大小比较,熟知度、分、秒的
12、换算是解答此题的关键8、A【分析】根据分式的值为零的条件可以求出x的值【详解】依题意得:x290且x0,解得x3故选A【点睛】本题考查了分式的值等于0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可9、D【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】解: 3.14-(-)= 3.14+故选:D【点睛】本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键10、C【分析】延长至点E,使,连接,证明,可得,然后运用三角形三边关系可得结果【详解】如图,延长至点E,使,连接 线 封 密 内 号学级年名姓 线 封 密 外 为
13、的边上的中线,在和中,在中,即,故选:C【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键二、填空题1、【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍【详解】根据题意得:,解得:m=2故答案为2【点睛】本题考查了反比例函数的性质对于反比例函数y=,当k0时,在每一个象限内,函数值y随自变量x的增大而减小;当k0时,在每一个象限内,函数值y随自变量x增大而增大2、【分析】利用已知得出AC的长,再利用中点的性质得出AD的长【详解】解:AB=10cm,BC=4cm,AC=6cm,D是线段AC的中点,AD=3cm故答案为:3cm【点
14、睛】此题主要考查了线段长度的计算问题与线段中点的概念,得出AC的长是解题关键 线 封 密 内 号学级年名姓 线 封 密 外 3、1【解析】【分析】解出不等式组的解集,与已知解集1x1比较,可以求出a、b的值,然后代入即可得到最终答案【详解】解不等式xa2,得:xa+2,解不等式b2x0,得:x不等式的解集是1x1,a+2=1,1,解得:a=3,b=2,则(a+b)2019=(3+2)2019=1故答案为:1【点睛】本题考查了解一元一次不等式组,已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数4、(每两个3之间依次多一个“
15、1”),【分析】无理数:即无限不循环小数,据此回答即可【详解】解:,无理数有:(每两个3之间依次多一个“1”),故答案为:(每两个3之间依次多一个“1”),【点睛】此题考查了无理数的概念,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,(每两个之间一次多个)等形式5、 【详解】试题解析:由勾股定理得,直角三角形的斜边长=cm;直角三角形的面积=cm2故答案为三、解答题1、(1)t=3;见解析;(2)=+60;(3)t=15或t=24或t=54【分析】(1)求出BOC,利用角平分线的定义求出BOM,进而求出AON,然后列方程求解;求出CON=15即可求解;(2)用含t的代数式表示出和
16、,消去t即可得出结论;(3)分三种情况列方程求解即可【详解】解:(1)AOC30,COM=60,BOC=150,OM恰好平分BOC,BOM=BOC=75, 线 封 密 内 号学级年名姓 线 封 密 外 AON=180-90-75=15,5t=15,t=3;AOC=30,AON=15,CON=15,此时ON平分AOC;(2)由旋转的性质得,AON=5t,COM=60+5t,把代入,得=+60;(3)当ON与OC重合时,605=12秒,当OC与OA重合时,(360-60)20+12=27秒,当OC平分MON,且OC未与OA重合时,则CON=45,由题意得,60+20(t-12)-5t=45,解得t
17、=15;当OM平分CON,且OC未转到OA时,则CON=180,由题意得,60+20(t-12)-5t=180,解得t=24;当OM平分CON,且OC转到OA时,则AOM=90,由题意得,360-90=5t,t=54,综上可知,当t=15或t=24或t=54时, ON,OM两条边所在的射线及射线OC,三条射线中的某一条射线是另两条射线的角平分线【点睛】本题考查了角的和差,角平分线的定义,以及一元一次方程的定义,正确识图是解答本题的关键2、(1) 40 50 (2)10 线 封 密 内 号学级年名姓 线 封 密 外 (3)【分析】(1)由题意结合图形可得,利用补角的性质得出,根据角平分线进行计算
18、即可得出;(2)分两种情况进行讨论:射线OD与射线OB重合前;射线OD与射线OB重合后;作出相应图形,结合运动时间及角平分线进行计算即可得;(3)由(2)过程可得,分两种情况进行讨论:当时,当时;结合相应图形,根据角平分线进行计算即可得(1)解:,射线OM平分,射线ON平分,故答案为:;(2)解:如图所示:当射线OC与射线OA重合时,以每秒的速度绕点O顺时针旋转,OC以每秒的速度绕点O顺时针旋转,运动时间为:,射线OD与射线OB重合前,根据题中图2可得:,ON平分,射线OB平分,即,解得:;当时,不运动,OD一直运动,射线OB平分, 线 封 密 内 号学级年名姓 线 封 密 外 当射线OD与射
19、线OB重合时,射线OD旋转一周的时间为:,射线OD与射线OB重合后,当时,设当OD转到如图所示位置时,OB平分,ON平分,不符合题意,舍去;综上可得:当t为10s时,射线OB平分;(3)解:当时,射线OM平分,由(2)可得:,当时,解得:,时,;当时, 线 封 密 内 号学级年名姓 线 封 密 外 不符合题意,舍去,综上可得:时,【点睛】题目主要考查角平分线的计算及角度的计算问题,理解题意,作出相应图形是解题关键3、(1)(2)点R行驶的总路程为;R停留的最后位置在数轴上所对应的有理数为(3)或或或【分析】(1)根据非负数的意义分析即可;(2)根据题意,三点重合,则只需计算点的位置以及运动时间
20、即可;(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题(1)故答案为:(2)当点P到达原点O时,动点R从原点O出发,则到达点需要:秒则此时点的位置为设秒后停止运动,则解得此时点的位置在,即点也在点位置,其对应的有理数为:点的运动时间为,速度为个单位长度每秒,则总路程为(3)存在,的值为: 理由如下:,11秒后点停止运动当分别位于的两侧时,如图,此时,表示的有理数为,表示的有理数为解得当重合时,即第一次相遇时,如图,则 线 封 密 内 号学级年名姓 线 封 密 外 解得当点从点返回时,则点表示的有理数为若此时点未经过点,则则解得,则此种情况不存在则此时点已经过点,如图,则解得当在点右侧
21、重合时,如图,则解得此时点都已经到达点,此时即三点重合,停止运动故t的值为:【点睛】本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键4、(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,1)(2)图像见解析【分析】(1)根据二次函数y=a(x-h)2+k,当a0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象(1)解:(1)二次函数yx21,抛物线的开口方向向上,顶点坐标为(0,1),对称轴为y轴;(2)解:在yx
22、21中,令y0可得x21=0解得x1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x0可得y1,所以抛物线与y轴的交点坐标为(0,-1);又顶点坐标为(0,1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012yx2130-103描点可画出其图象如图所示: 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标以及二次函数抛物线的画法解题的关键是把二次函数的一般式化为顶点式描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标5、(1)抛物线表达式为;(2)当时,S四边形PQDC最
23、大=;(3)所有符合条件的点的坐标()或()或()或()【分析】(1)利用待定系数法求抛物线解析式抛物线过,两点,代入坐标得:,解方程组即可;(2)根据点的横坐标为,点的横坐标为,得出,解不等式组得出,用m表示点P,点Q,用待定系数法求出AB解析式为,用m表示点C,点D,利用两点距离公式求出PC=,QD=,利用梯形面积公式求出S四边形PQDC=即可;(3)根据勾股定理求出AB=,将抛物线配方,根据平移,得出抛物线向右平移4个单位,再向下平移2个单位, 求出新抛物线,根据, 求出点P,与对应点E,平移后新抛物线对称轴为,设点G坐标为,点F()分两类四种种情况,四边形BEFG为菱形,BE=EF,根
24、据勾股定理,求出点F(),(),当点F()时,点G、F、E、B坐标满足,得出 G(),点F()时,点G3、F、E、B坐标满足, ,得出G3(),四边形BEFG为菱形,BE=BF,根据勾股定理,点F(),(),点F()时,点G1、F、E、B坐标满足, ,得出 G1(),点F()时,点G2、F、E、B坐标满足,得出G2()【详解】解:(1)抛物线过,两点,代入坐标得:,解得:,抛物线表达式为; 线 封 密 内 号学级年名姓 线 封 密 外 (2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,解得,点P,点Q设AB解析式为,代入坐标得:,解得:,AB解析式为,点C,点DPC=,Q
25、D=S四边形PQDC=,当时,S四边形PQDC最大=;(3)AB=,抛物线向右平移4个单位,再向下平移2个单位, ,点P,对应点E,平移后新抛物线对称轴为,设点G坐标为,点F(),分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,或,点F(),(), 线 封 密 内 号学级年名姓 线 封 密 外 当点F()时,点G、F、E、B坐标满足:,解得,解得,G();点F()时,点G3、F、E、B坐标满足:,解得,解得,G3();四边形BEFG为菱形,BE=BF,根据勾股定理,或,点F(),(),点F()时,点G1、F、E、B坐标满足:,解得,解得,G1();点F()时,点G2、F、E、B坐标满足:,解得,解得,G2(),综合所有符合条件的点的坐标()或()或()或() 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查待定系数法求抛物线解析式与直线解析式,两点距离,梯形面积,二次函数顶点式最值,抛物线平移,菱形性质,图形与坐标,本题难度大,解题复杂,计算要求非常准确,考查学生多方面能力,知识掌握情况,阅读,分类,数形结合,运算,画图是中考难题