《2022年沪科版九年级数学下册期末测评-A卷(精选).docx》由会员分享,可在线阅读,更多相关《2022年沪科版九年级数学下册期末测评-A卷(精选).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版九年级数学下册期末测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是必然发生的事件是( )A在地球上,上抛的篮球一定会下落B明天的气
2、温一定比今天高C中秋节晚上一定能看到月亮D某彩票中奖率是1%,买100张彩票一定中奖一张2、如图,AB为的直径,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )ABC3D3、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80B70C60D504、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )A60B90C120D1805、在中,给出条件:;外接圆半径为4请在给出的3个条件中选取一个,使得BC的长唯一可以选取的是( )ABCD或6、下列图形中,既是轴对称图形,
3、又是中心对称图形的是()ABCD7、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD8、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD9、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )ABCD10、下列关于随机事件的概率描述正确的是( )A抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C随机事件发生的概率大于或等于0,小于或等于1D在相同条件下可以通过大量重复实验,用一个随机事
4、件的频率去估计概率第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息“皮影戏”中的皮影是_(填写“平行投影”或“中心投影”)2、如图,、分别与相切于A、B两点,若,则的度数为_3、到点的距离等于8厘米的点的轨迹是_4、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为_5、有四张完全相同的卡片,正面分别标有数字,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再
5、从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是_三、解答题(5小题,每小题10分,共计50分)1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半如图1,AO已知:如图2,AC是O的一条弦,点D在O上(与A、C不重合),联结DE交射线AO于点E,联结OD,O的半径为5,tanOAC(1)求弦AC的长(2)当点E在线段OA上时,若DOE与AEC相似,求DCA的正切值(3)当OE1时,求点A与点D之间的距离(直接写出答案) 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,是的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H(1)判断与的
6、位置关系并说明理由;(2)若,求弧的长3、某省高考采用“3+1+2”模式:“3”是指语文、数学、英语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在思想政治、化学、生物、地理4科中任选2科(1)假定在“1”中选择历史,在“2”中已选择地理,则选择生物的概率是_;(2)求同时选择物理、化学、生物的概率4、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F(1)如图,当点P在线段AB上运动时,若DBE30,PB2,求DE的长;(2)当点P在射线AB上运动时,试探求线
7、段AB,PB,PF之间的数量关系,并给出证明5、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC作AELOB于E、AFOC于F、(依据是 ),(依据是 ),BC是的直径(依据是 ),A的坐标为( )的半径为 -参考答案-一、单选题1、A【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A、在地球上,上抛的篮球一定会下落是必
8、然事件,符合题意;B、明天的气温一定比今天的高,是随机事件,不符合题意;C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意故选:A【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念关键是理解必然事件指在一定条件下一定发生的事件2、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角
9、是90度,勾股定理,等边三角形的判定,求得的长是解题的关键3、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时针旋转得到, 线 封 密 内 号学级年名姓 线 封 密 外 ,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质4、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定
10、点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120故选C【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键5、B【分析】画出图形,作,交BE于点D根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意【详解】如图,点C在射线上作,交BE于点D,为等腰直角三角形,不存在的三角形ABC,
11、故不符合题意;,AC=8,而AC6,存在的唯一三角形ABC,如图,点C即是,使得BC的长唯一成立,故符合题意;,存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点和即为使的外接圆的半径等于4的点 线 封 密 内 号学级年名姓 线 封 密 外 故不符合题意故选B【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质利用数形结合的思想是解答本题的关键6、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不
12、是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.7、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线
13、定理及勾股定理是解题的关键8、A【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据轴对称图形与中心对称图形的概念求解【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合9、A【分析】首先利用列举法可得
14、所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝上的概率是:.故选A【点睛】本题考查了列举法求概率的知识此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比10、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过
15、大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题1、中心投影【分析】根据平行投影和中心投影的定义解答即可【详解】解:“皮影戏”中的皮影是中心投影故答案是中心投影【点睛】本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影2、【分析】 线 封 密 内
16、 号学级年名姓 线 封 密 外 根据已知条件可得出,再利用圆周角定理得出即可【详解】解:、分别与相切于、两点,故答案为:【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键3、以点为圆心,8厘米长为半径的圆【分析】由题意直接根据圆的定义进行分析即可解答【详解】到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆故答案为:以点为圆心,8厘米长为半径的圆【点睛】本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合4、【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率
17、公式即可求得答案【详解】解:小明和小强玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:由表格可知,共有9种等可能情况其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布)小明和小强平局的概率为:,故答案为:【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率=所求情况数与总情况数之比5、【分析】根据二次函数的性质,对称轴为,进而可得同号,根据列表法即可求得二次函数的对称轴在轴左侧的概率【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:二次函数的对称轴在轴左侧对称轴为,即同号,列表如下共有12种等可能结果,其中同号的结果有4种则二次函数的对称轴在轴左侧的概率为故答案
18、为:【点睛】本题考查了二次函数图象的性质,列表法求概率,掌握二次函数的图象与系数的关系以及列表法求概率是解题的关键三、解答题1、(1)8(2)(3)或【分析】(1)过点O作OHAC于点H,由垂径定理可得AHCHAC,由锐角三角函数和勾股定理可求解;(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;(3)分两种情况讨论,由相似三角形和勾股定理可求解(1)如图2,过点O作OHAC于点H,由垂径定理得:AHCHAC,在RtOAH中,设OH3x,AH4x,OH2+AH2OA2,(3x)2+(4x)252,解得:x1,(x1舍去),OH3,AH4,AC2AH8;(2) 线 封
19、密 内 号学级年名姓 线 封 密 外 如图2,过点O作OHAC于H,过E作EGAC于G,DEOAEC,当DOE与AEC相似时可得:DOEA或者DOEACD;,ACDDOE当DOE与AEC相似时,不存在DOEACD情况,当DOE与AEC相似时,DOEA,ODAC,ODOA5,AC8,AGEAHO90,GEOH,AEGAOH,在RtCEG中,;(3)当点E在线段OA上时,如图3,过点E作EGAC于G,过点O作OHAC于H,延长AO交O于M,连接AD,DM,由(1)可得 OH3,AH4,AC8,OE1, 线 封 密 内 号学级年名姓 线 封 密 外 AE4,ME6,EGOH,AEGAOH,AG,EG
20、,GC,EC,AM是直径,ADM90EGC,又MC, EGCADM,AD2;当点E在线段AO的延长线上时,如图4,延长AO交O于M,连接AD,DM,过点E作EGAC于G,同理可求EG,AG,AE6,GC,EC,AM是直径,ADM90EGC,又MC,EGCADM, ,AD,综上所述:AD的长是或【点睛】本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键2、(1)相切,见解析(2)【分析】(1)连接OC、OD、AC,OC交AF于点M,根据AGCG,CDAB,可得,从而OCAF,再由AFB90,可得CHAF,即可求证; 线 封
21、密 内 号学级年名姓 线 封 密 外 (2)先证明四边形CMFH为矩形,可得OCAF,CMHF2,从而得到AMFM,进而得到OMBF2,可得到CMOM,进而得到 OC=4,AM垂直平分OC,可证得AOC为等边三角形,即可求解(1)解: CH与O相切理由如下:如图,连接OC、OD、AC,OC交AF于点M, AGCG,ACGCAG,CDAB,OCAF,AB为直径,AFB90,BHCH,CHAF,OCCH,OC为半径,CH为O的切线;(2)解:由(1)得:BHCH,OCCH,OCBH,CHAF,四边形CMFH为平行四边形,OCCH,OCH=90,四边形CMFH为矩形,OCAF,CMHF2,AMFM,
22、点O为AB的中点,OMBF2,CM=OM,OC=4,AM垂直平分OC,ACAO,而AOOC,ACOCOA,,AOC为等边三角形,AOC60, 线 封 密 内 号学级年名姓 线 封 密 外 AODAOC60,COD120,弧CD的长度为【点睛】本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键3、(1)(2)【分析】(1)直接根据概率公式即可得出答案;(2)根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案(1)解:在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为
23、故答案为:;(2)解:用树状图表示所有可能出现的结果如下:共有12种等可能的结果数,其中选中“化学”“生物”的有2种,则在“1”中选择物理的概率,同时选择物理、化学、生物的概率故答案为:【点睛】本题考查的是用列表法或树状图法求概率,解题的关键是掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比4、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析【分析】(1)根据PBD等腰直角三角形,PB2,求出DB的长,由O是PBD的外接圆,DBE30,可得答案;(2)根据同弧所对的圆周角,可得AD
24、P=FBP,由PBD等腰直角三角形,得DPB=APD=90,DP=BP,可证APDFPB,可得答案【详解】解:(1)由题意画以下图,连接EP, 线 封 密 内 号学级年名姓 线 封 密 外 PBD等腰直角三角形,O是PBD的外接圆,DPB=DEB=90,PB2, ,DBE30, (2)点P在点A、B之间,由(1)的图根据同弧所对的圆周角相等,可得:ADP=FBP,又PBD等腰直角三角形,DPB=APD=90,DP=BP,在APD和FPB中APDFPBAP=FP,AP+PB=ABFP+PB=AB,FP=AB-PB,点P在点B的右侧,如下图:PBD等腰直角三角形,DPB=APF=90,DP=BP,
25、PBF+EBP=180,PDA+EBP=180, 线 封 密 内 号学级年名姓 线 封 密 外 PBF=PDA,在APD和FPB中APDFPBAP=FP,AB+PB=AP,AB+PB=PF,PF= AB+PB综上所述,FP=AB-PB或PF= AB+PB【点睛】本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况5、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答【详解】解:如图2,连接BC作AEOB于E、AFOC于F、(依据是垂径定理),(依据是圆周角定理),BC是的直径(依据是圆周角定理),A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键