《2022年强化训练2022年沪科版九年级数学下册期末测评-A卷(精选).docx》由会员分享,可在线阅读,更多相关《2022年强化训练2022年沪科版九年级数学下册期末测评-A卷(精选).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年沪科版九年级数学下册期末测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB,CD是O的弦,且,若,则的度数为( )A30B40C
2、45D602、中国有悠久的金石文化,印信是金石文化的代表之一南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体从正面看该几何体得到的平面图形是( )ABCD3、如图,点A、B、C在上,则的度数是( )A100B50C40D254、7个小正方体按如图所示的方式摆放,则这个图形的左视图是( )A BC D5、如图,AB是的直径,弦CD交AB于点P,则CD的长为( )ABCD8 线 封 密 内 号学级年名姓 线 封 密 外 6、如图,是ABC的外接圆,已知,则的大小为( )A55B60C65D757、如图,在中,将绕点
3、A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A1B2C3D48、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )A1BCD9、下列四个图案中,是中心对称图形但不是轴对称图形的是( )ABCD10、下列图形中,既是中心对称图形又是抽对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、边长为2的正三角形的外接圆的半径等于_2、已知60的圆心角所对的弧长是3.14厘米,则它所在圆的周长是_厘米3、一个五边形共有_条对角线4、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动
4、点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_5、如图,正方形ABCD的边长为1,O经过点C,CM为O的直径,且CM1过点M作O的切线分别交边AB,AD于点G,HBD与CG,CH分别交于点E,F,O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部)给出下列四个结论:HD2BG;GCH45;H,F,E,G四点在同一个圆上;四边形CGAH面积的最大值为2其中正确的结论有 _(填写所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB是的直径,点D为弦BC中点,过点C作切线,交OD延长线于点E,连结
5、线 封 密 内 号学级年名姓 线 封 密 外 BE,OC(1)求证:(2)求证:BE是的切线2、在中,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,依题意补全图形,并直接写出BC与CF的位置关系;求证:点G为BF的中点(2)直接写出AE,BE,AG之间的数量关系3、从2021年开始,重庆市新高考采用“”模式:“3”指全国统考科目,即:语文、数学、外语三个学科为必选科目;“1”为首选科目,即:物理、历史这2个学科中任选1科,且必须选1科;“2”为再
6、选科目,即:化学、生物、思想政治、地理这4个学科中任选2科,且必须选2科小红在高一上期期末结束后,需要选择高考科目(1)小红在“首选科目”中,选择历史学科的概率是_(2)用列表法或画树状图法,求小红在“再选科目”中选择思想政治和地理这两门学科的概率4、如图,在中,以AC为直径的半圆交斜边AB于点D,E为BC的中点,连结DE,CD过点D作于点F(1)求证:DE是的切线;(2)若,求的半径5、4张相同的卡片上分别写有数字0、1、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来(1)第一次抽取的卡片上数字是非负数的概率为
7、_;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)-参考答案-一、单选题1、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:, 线 封 密 内 号学级年名姓 线 封 密 外 ,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键2、D【分析】找到从正面看所得到的图形即可【详解】解:从正面看是一个正六边形,里面有2个矩形,故选D【点睛】本题灵活考查了三种视图之间的关
8、系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中3、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,AOB=100,OA=OB,OAB=OBA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半4、C【分析】细心观察图中几何体摆放的位置,根据左视图是从左面看到的图象判定则可【详解】解:从左边看,是左边3个正方形,右边一个正方形故选:C【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图5、A【分析】过点作于点,连接,根据已知条件即可求得,根据含
9、30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长【详解】解:如图,过点作于点,连接, 线 封 密 内 号学级年名姓 线 封 密 外 AB是的直径,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键6、C【分析】由OA=OB,求出AOB=130,根据圆周角定理求出的度数【详解】解:OA=OB,BAO=AOB=130=AOB=65故选:C【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半7、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2【详解
10、】由题意以及旋转的性质知AD=AB,BAD=60ADB=ABDADB+ABD+BAD=180ADB=ABD=60故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形8、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,
11、有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程, 线 封 密 内 号学级年名姓 线 封 密 外 a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键9、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不
12、符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【详解】解:是轴对称图形,不是中心对称图形,故此选项不符合题意;既是轴对称图形,也是中心对称图形,故此选项符合题意;是轴对称图形,不是中心对称图形,故此选项不符合题意;不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图
13、形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、【分析】过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径【详解】如图所示,是正三角形,故O是的中心,正三角形的边长为2,OEAB,由勾股定理得:, 线 封 密 内 号学级年名姓 线 封 密 外 ,(负值舍去)故答案为:【点睛】本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解2、18.84【分析】先根据弧长公式求得r,然后再运用圆的周长公式解答即可【详解】解:设圆弧所在圆的半径为厘米,则,解得,则它所在圆的周长为(厘米),故答案为:【点睛】本题主要考查了
14、弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键3、5【分析】由n边形的对角线有: 条,再把代入计算即可得【详解】解:边形共有条对角线,五边形共有条对角线故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键4、#【分析】延长AG交CD于M,如图1,可证ADGDGC可得GCD=DAM,再证ADMDFC可得DF=DM=AE,可证ABEADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值【详解】解:延长AG交CD于M,如图1,ABCD是正方形,AD=CD=AB,BAD=ADC=9
15、0,ADB=BDC,AD=CD,ADB=BDC,DG=DG,ADGDGC,DAM=DCF且AD=CD,ADC=ADC, 线 封 密 内 号学级年名姓 线 封 密 外 ADMCDF,FD=DM且AE=DF,AE=DM且AB=AD,ADM=BAD=90,ABEDAM,DAM=ABE,DAM+BAM=90,BAM+ABE=90,即AHB=90,点H是以AB为直径的圆上一点如图2,取AB中点O,连接OD,OH,AB=AD=2,O是AB中点,AO=1=OH,在RtAOD中,OD=,DHOD-OH,DH-1,DH的最小值为-1,故答案为:-1【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,
16、关键是证点H是以AB为直径的圆上一点5、【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,HCM=HCD,GM=GB,GCB=GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明GHF+GEF=180,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可【详解】GH是O的切线,M为切点,且CM是O的直径,CMH=90,四边形ABCD是正方形,CMH=CDH=90,CM=CD,CH=CH,CMHCDH,HD=HM,HCM=HCD,同理可证,GM=GB,GCB=GCM,GB+DH=GH,无法确定HD
17、2BG,故错误;HCM+HCD+GCB+GCM=90,2HCM+2GCM=90,HCM+GCM=45,即GCH45, 线 封 密 内 号学级年名姓 线 封 密 外 故正确;CMHCDH,BD是正方形的对角线,GHF=DHF,GCH=HDF=45,GHF+GEF=DHF +GCH+EFC=DHF +HDF+HFD=180,根据对角互补的四边形内接于圆,H,F,E,G四点在同一个圆上,故正确;正方形ABCD的边长为1,=1=,GAH=90,AC=取GH的中点P,连接PA,GH=2PA,=,当PA取最小值时,有最大值,连接PC,AC,则PA+PCAC,PAAC- PC,当PC最大时,PA最小,直径是
18、圆中最大的弦,PC=1时,PA最小,当A,P,C三点共线时,且PC最大时,PA最小,PA=-1,最大值为:1-(-1)=2-,四边形CGAH面积的最大值为2,正确;故答案为: 【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键三、解答题1、(1)见解析(2)见解析【分析】(1)由垂径定理可得ODBC、CD=DB、CDE=BDE,然后说明RtCDERtBDE,最后运用全等三 线 封 密 内 号学级年名姓 线 封 密 外 角形的性质即可证明;(2)由等腰三角形的性质可得EC
19、B=EBC、 OCB=OBC,再根据CE是切线得到OCE=90,即OCB+BCE=90,进而说明BEAB即可证明(1)证明:点D为弦BC中点ODBC,CD=DBCDE=BDE在RtCDE和RtBDECD=BD, CDE=BDE,DE=DERtCDERtBDEEC=EB(2)证明:EC=EB,OC=OBECB=EBC, OCB=OBC,CE是切线OCE=90,即OCB+BCE=90OBC+EBC=90,即BEABBE是的切线【点睛】本题主要考查了垂径定理、全等三角形的判定与性质、切线的证明、等腰三角形的性质等知识点,掌握垂径定理是解答本题的关键2、(1)BCCF;证明见详解;见详解;(2)2AE
20、2=4AG2+BE2证明见详解【分析】(1)如图所示,BCCF根据将线段AE逆时针旋转90得到线段AF,得出AE=AF,EAF=90,可证BAECAF(SAS),得出ABE=ACF=45,可得ECF=ACB+ACF=45+45=90即可;根据ADBC,BCCF可得ADCF,可证BDGBCF,可得,得出即可;(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分BAC,可得BAD=CAD=,可证BAGBHF,得出HF=2AG,再证AECAFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可【详解】解:(1)如图所示,BCCF将线段AE逆时针旋转90
21、得到线段AF,AE=AF,EAF=90,EAC+CAF=90,BAE+EAC=90,ABC=ACB=45,BAE=CAF,在BAE和CAF中,BAECAF(SAS),ABE=ACF=45,ECF=ACB+ACF=45+45=90,BCCF; 线 封 密 内 号学级年名姓 线 封 密 外 ADBC,BCCFADCF,BDG=BCF=90,BGD=BFC,BDGBCF,ADBC,BD=DC=,BG=GF;(2)2AE2=4AG2+BE2延长BA交CF延长线于H,ADBC,AB=AC,AD平分BAC,BAD=CAD=,BG=GF,AGHF,BAG=H=45,AGB=HFB,BAGBHF,HF=2AG
22、,ACE=45,ACE =H,EAC+CAF=90,CAF+FAH=90,EAC=FAH,在AEC和AFH中,AECAFH(AAS),EC=FH=2AG,在RtAEF中,根据勾股定理,在RtECF中,即 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键3、(1)(2)【分析】(1)根据概率的公式计算可得答案;(2)画树状图,共有12个等可能的结果,该同学恰好选中思想政治和地理化两科的结果有2个,
23、再由概率公式求解即可(1)解:选择物理、历史共有2中等可能结果,选择历史学科的结果有1种,所以选择历史学科的概率是;(2)假设A表示化学、B表示生物、C表示思想政治、D表示地理,画树状图如下图:共有12个等可能的结果,该同学恰好选中思想政治和地理的结果有2个,所以该同学恰好选中思想政治和地理的概率为【点睛】此题考查了概率的求法,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,还考查了用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,做题的关键是掌握概率的求法
24、4、(1)见解析(2)【分析】(1)连接,先根据等腰三角形的性质可得,再根据圆周角定理可得,然后根据直角三角形的性质可得,根据等腰三角形的性质可得,从而可得,最后根据圆的切线的判定即可得证;(2)连接,先利用勾股定理可得,设的半径为,从而可得,再在中,利用勾股定理即可得(1)证明:如图,连接, 线 封 密 内 号学级年名姓 线 封 密 外 ,是的直径,点是的中点,即,又是的半径,是的切线;(2)解:如图,连接,设的半径为,则,在中,即,解得,故的半径为【点睛】本题考查了圆周角定理、等腰三角形的性质、圆的切线的判定、勾股定理等知识点,熟练掌握圆周角定理和圆的切线的判定是解题关键5、(1)(2)此
25、游戏公平,理由见解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案(1)解:第一次抽取的卡片上数字是非负数的概率为,故答案为:(2)解:列表如下: 线 封 密 内 号学级年名姓 线 封 密 外 01-2301-231-1-32-22353-3-2-5由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率乙获胜的概率,此游戏公平【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平用到的知识点为:概率所求情况数与总情况数之比