《2022年精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含详解).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC内接于O,BAC30,BC6,则O的直径等于()A10B6C6D122、如图,CD是的高,按以下步骤作图:
2、(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点(2)作直线GH交AB于点E(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD于点P则下列说法错误的是( ) ABCD3、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD4、下列图形中,可以看作是中心对称图形的是( )ABCD5、已知O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与O的位置关系是( )A相离B相切C相交D相交或相切6、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD7、如图,圆形螺帽的内接正六边形的面积为2
3、4cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm8、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm9、下列汽车标志中既是轴对称图形又是中心对称图形的是( )ABCD10、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(hun)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一
4、斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺2、在ABC中,已知ABC90,BAC30,BC1,如图所示,将ABC绕点A按逆时针方向旋转90后得到ABC则图中阴影部分的面积为_3、一个五边形共有_条对角线4、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与ADE相等的角是 _ 5、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为若,则的大小为_(度)三、解答题(5小题,每小题10分,共计50分)1、在等边中,是边上一动点,连接,将绕点顺时针旋转120,得到,连接(1)如图1,当、三
5、点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值2、如图,已知等边内接于O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E(1)求证:CE是O的切线;(2)若AB的长为6,求CE的长3、如图,AB是的直径,CD是的一条弦,且于点E(1)求证:;(2)若,求的半径4、在平面直角坐标系xOy中,O的半径为1对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到O的弦AB,则称线段AB是O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”(1)如图,线段
6、CD,EF,GH中是O的以直线l为对称轴的“反射线段”有 ;(2)已知A点坐标为(0,2),B点坐标为(1,1),若线段AB是O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN1,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是O的以直线l为对称轴的“反射线段”,当
7、M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围5、如图,四边形是的内接四边形,(1)求的度数(2)求的度数-参考答案-一、单选题1、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30,BOC=60OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键2、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据可得AFE=45,进而得出AFB90,根据等腰直角三
8、角形和圆周角定理可判断哪个结论正确【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,故A正确;CD是的高,故B正确;,故C错误;,AFE=45,同理可得BFE=45,AFB90,故D正确;故选:C【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明3、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查
9、了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键4、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心5、B【分析】圆的半径为 圆心O到直
10、线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: O的直径为10cm,圆心O到直线l的距离为5cm, O的半径等于圆心O到直线l的距离, 直线l与O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.6、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定
11、义,熟练掌握中心对图形的定义,是解决该题的关键7、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键8、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为
12、,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键9、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、
13、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90,CDB=30,COB=2CDB=60,OCE=30,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键二、填空题
14、1、【分析】如图,根据四边形CDEF为正方形,可得D=90,CD=DE,从而得到CE是直径,ECD=45,然后利用勾股定理,即可求解【详解】解:如图, 四边形CDEF为正方形,D=90,CD=DE,CE是直径,ECD=45,根据题意得:AB=2.5, , , ,即此斛底面的正方形的边长为 尺故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键2、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案【详解】解:由旋转得,=BAC30,ABC90,BAC30,BC1,AC=2BC=2,AB=, 阴影部分的面积=,故答案为:【点睛】此题
15、考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键3、5【分析】由n边形的对角线有: 条,再把代入计算即可得【详解】解:边形共有条对角线,五边形共有条对角线故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键4、ABC【分析】根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果【详解】解:四边形ABCD内接于圆,E为CD延长线上一点,故答案为:【点睛】题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键5、20【分析】先利用旋转的性质得到ADC=D=90,DAD=
16、,再利用四边形内角和计算出BAD=70,然后利用互余计算出DAD,从而得到的值【详解】矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,ADC=D=90,DAD=,ABC=90,BAD=180-1=180-110=70,DAD=90-70=20,即=20故答案为20【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等三、解答题1、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形
17、的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆
18、由(2)可知,将绕点顺时针旋转120,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键2、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得ABC=BCE=60,求出OCB=30,则OCE=90,结论得证;(2)根据题意由条件可得DBC=30,BEC=90,进而即可求出CE=BC3【详解】解:(1)证明:如图连接OC
19、、OB是等边三角形 又 与O相切; (2)四边形ABCD是O的内接四边形,D为的中点, 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识解题的关键是正确作出辅助线,利用圆的性质进行求解3、(1)见解析;(2)3【分析】(1)根据D=B,BCO=B,代换证明;(2)根据垂径定理,得CE=,利用勾股定理计算即可【详解】(1)证明:OCOB,BCOB;,BD;BCOD;(2)解:AB是O的直径,且CDAB于点E,CECD,CD,CE,在RtOCE中,OE1,;O的半径为3【点睛】本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个
20、定理是解题的关键4、(1)EF、CD;(2);(3);(4)或【分析】(1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;(2)根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;由可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线yx的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;(3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该
21、圆的切线,求得半径为,根据圆的面积公式进行计算即可;(4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围【详解】(1)的半径为1,则的最长的弦长为2根据两点的距离可得故符合题意的“反射线段”有EF、CD;故答案为:EF、CD(2)如图,过点作轴于点,连接 A点坐标为(0,2),B点坐标为(1,1),且,的半径为1,且线段AB是O的以直线l为对称轴的“反射线段”,由可得当时,yM如图,设当取得最大值时,过点作轴,根据题意,分别为沿直线yx的方向向上平移一段距离S 后的对应点,则
22、, 过中点,作直线交轴于点,则即为反射轴yM,即即解得(舍)(3)的半径为1,则是等边三角形,根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴, 反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线当M点在圆上运动一周时,求反射轴l未经过的区域的面积为(4)如图,根据(2)的方法找到所在的圆心,设则,是等腰直角三角形,当M点在圆上运动一周时,如图,取的中点,的中点,是的中位线,即的中点在以为圆心,半径为的圆上运动若MN是O的以直线l为对称轴的“反射线段”,则为的切线设与轴交于点,同理可得反射轴l与y轴交点的纵坐标的取值范围为或【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键5、(1)70;(2)103【分析】(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可【详解】解:(1),在中,(2)由圆周角定理,得【点睛】题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键